On Walks and Canonical Double Coverings of Graphs with the same Main Eigenspace

Luke Collins

supervised by
Prof. Irene Sciriha

[^0]Dedicated to my parents, for their undying love and support.

Abstract

The main eigenvalues of a graph G are the eigenvalues of its $(0,1)$-adjacency matrix having some corresponding eigenvector not orthogonal to the all-ones vector $\boldsymbol{j}=(1, \ldots, 1)$. In this dissertation, the relationship between the main eigenvalues of a graph and the number of walks is discussed. The number of walks N_{k} of length k in the graph G is expressed solely in terms of the main eigenvalues and main angles of G. The walk matrices of two comain non-isomorphic graphs with the same main eigenspace are shown to be of the same column space. Moreover, various properties of graphs relating the main eigenvalues, eigenspaces, eigenvectors and canonical double covers are catergorised in a hierarchical form.

Contents

0 Preface 3
1 Introduction 5
1.1 Basic Terminology 5
1.2 Some Basic Results 8
1.3 Document Structure 10
2 Preliminary Matrix Theory 11
2.1 Permutation Matrices 11
2.2 Spectral Results 15
2.2.1 Orthogonal Projections 15
2.2.2 The Spectral Theorem 18
2.3 Number of Walks 22
2.4 Gauss' Lemma 23
3 Main Eigenvalues 25
3.1 Main Angles 25
3.2 The Main Polynomial 26
3.3 The Main Eigenspace 29
3.4 The Walk Matrix 31
4 Canonical Double Covers 34
4.1 Two Structural Results 36
4.2 Graphs with the same CDC 37
4.3 Establishing a Hierarchy 40
Appendix: All Pairs of TF-Isomorphic Graphs on 8 Vertices 47
Bibliography 60
Index 62

List of Figures

1 Illustration of the Königsberg bridge puzzle ${ }^{[10]}$ 4
1.1 Three equivalent representations of the graph G 6
2.1 Illustration of definition 2.8 in \mathbb{R}^{2}. 16
3.1 The only two counterexamples on $\leqslant 8$ vertices, as described in counterexample 3.17. 33 33
4.1 Canonical double coverings of \mathbf{C}_{3} and $\mathbf{K}_{2,3}$, where vertices $(v, 0)$ are represented by circle nodes, and vertices $(v, 1)$ by square nodes. 35
4.2 The hierarchy we present through our results. The arrow \Rightarrow means "implies", and \nRightarrow means "does not imply". The combination \Leftrightarrow is short for \Rightarrow and \Leftarrow, i.e., "implies and is implied by", and similarly \nLeftarrow is short for \nRightarrow and \nLeftarrow, i.e., "does not imply and is not implied by". The dashed lines which merge at the \wedge node denote the conjunction of those two results. The dotted lines denote a conjecture 41
4.3 Graphs G and H give a counterexample to the converse of theorem 4.5, since they have the same walk matrix but different CDC's. 42
4.4 Graphs G and H have the same main eigenvalues, but have different walk matrices. 42
4.5 Graphs G and H have the same main eigenvectors, but have different walk matrices. 44
4.6 Graphs G and H have related walk matrices. 46

CHAPTER 0

Preface

A graph is a network of abstract objects called vertices in which some pairs are related: such pairs are called edges. Pictorially, the vertices are represented by dots, and edges are represented by lines joining those dots. A graph with n vertices can be represented algebraically using an $n \times n$ matrix, where the i th row and j th column contains a 1 entry if vertex i is connected to vertex j, and a 0 entry if they are not connected. This is called the adjacency matrix.

In applications, graphs are abstract representations of structures in which items are connected. Social networking sites, such as Facebook, make use of graphs to represent "friends" (vertices) and "friendships" (edges). Problems of finding "mutual friends", for example, make use of graph theoretic results. Graphs are also fundamental to the effectiveness of Google's PageRank algorithm, which determines the order in which results appear in a Google search. In this context, vertices represent different webpages, and two webpages are connected if one links to the other. A walk in such a graph corresponds to starting from one webpage, and clicking links to travel to others. If a large number of walks end in a particular webpage, then that webpage is "popular" so it is promoted more than others.

Historically, graph theory was first conceived when Leonhard Euler released a paper on the Königsberg bridge problem in 1736 , which led to his formula relating edges, vertices and faces of convex polyhedra. This paper is often pointed to as the birth of graph theory and topology.

Spectral graph theory is the study of graphs from a linear algebraic point of view. The subject explores the relation of the graph with the characteristic polynomial, eigenvalues and eigenvectors of its adjacency matrix. Since adjacency matrices are (0,1)-real symmetric matrices, a number of facts from linear algebra can be tailored more specifically

Figure 1: Illustration of the Königsberg bridge puzzle ${ }^{[10]}$
to graphs, and this often results in significant strengthening of results.
Spectral graph theory emerged in the mid-twentieth century. The monograph by Cvetović, Doob and Sachs, Spectra of Graphs (1980), summarises a large portion of the important results in this area. ${ }^{[6]}$

CHAPTER 1

Introduction

> "We can only see a short distance ahead, but we can see plenty there that needs to be done."

Alan Turing
In this chapter, we establish some basic notation and terminology that will be used throughout and state some rudimentary results, before giving an overview of the structure of the document.

1.1 Basic Terminology

Unless stated otherwise, small letters such as x, f or ϕ denote functions or elements (members) of a set, ordinary capital letters such as V, E or Ω denote sets, sans-serif capital letters such as G or P denote the names of graphs, small letters in bold font such as \boldsymbol{x} or \boldsymbol{v} denote vectors, and capitalised bold letters such as \mathbf{A} or \mathbf{M} denote matrices.

The set of positive integers $\{1,2,3, \ldots\}$ is denoted by the symbol \mathbb{N}, and for any $n \in \mathbb{N}$ the subset $\{m \in \mathbb{N}: m \leqslant n\}=\{1, \ldots, n\}$ is denoted by $[n]$. For any set A, we denote the cardinality by $|A|$, and the power set $\{X: X \subseteq A\}$ by $\wp A$. For any finite set A, we denote the set $\{X \in \wp A:|X|=k\}$ of all k-element subsets by $\binom{A}{k}$. The Cartesian product of k sets $A_{1}, A_{2}, \ldots, A_{k}$ is denoted $A_{1} \times \cdots \times A_{k}$ or $\prod_{i=1}^{k} A_{i}$, and if $A_{i}=A$ for all $i=1, \ldots, k$, then we simply write A^{k}.

A function f with domain A and codomain B is written as $f: A \rightarrow B$. If $X \subseteq A$, the restriction of f to X is a function with domain X and codomain B, is denoted $f \upharpoonright X$, and is defined by $(f \upharpoonright X)(x)=f(x)$ for $x \in X$.

A (simple) graph G is a pair of sets (V, E) where V is finite, and $E \subseteq\binom{V}{2}$, that is, E is

Figure 1.1: Three equivalent representations of the graph G
some subset of unordered pairs from V. The elements of V are called vertices or nodes, and the pairs in E are called edges. We sometimes denote the sets V and E by $V(\mathrm{G})$ and $E(\mathrm{G})$, to show that they belong to the graph G. Typically, we take $V=[n]$ for some $n \in \mathbb{N}$.

Example 1.1. Consider the graph G where $V(\mathrm{G})=[5]$, and

$$
E(\mathrm{G})=\{\{1,2\},\{1,3\},\{2,3\},\{2,4\},\{3,4\},\{4,5\}\} .
$$

These two sets define a graph. The reason we call this pair of sets a 'graph' is because we like to associate with them a graphical representation consisting of dots (representing vertices in V) connected by lines (which represent the edges in E), as depicted in figure 1.1. Note that many such representations are possible.

Unless stated otherwise, the number of vertices $|V(\mathrm{G})|$ of a graph G will be denoted by the letter n, and the number of edges $|E(\mathrm{G})|$ by the letter m.

Given a vertex $v \in V$ in a graph G , the set of neighbours of v, denoted $N_{\mathrm{G}}(v)$ or just $N(v)$, is the set

$$
N(v)=\{u \in V:\{u, v\} \in E\}
$$

of vertices joined to v by an edge. The number $|N(v)|$ of neighbours of $v \in V$ is the degree of v in G , denoted $\operatorname{deg}_{\mathrm{G}}(v)$ or $\operatorname{simply} \operatorname{deg}(v)$.

Two graphs G and H are isomorphic, written $G \simeq H$, if H is simply G with its vertices relabelled; i.e., if there exists a bijection $\pi: V(\mathrm{G}) \rightarrow V(\mathrm{H})$ such that $V(\mathrm{H})=\{\pi(v): v \in$ $V(\mathrm{G})\}$ and

$$
E(\mathrm{H})=\{\{\pi(u), \pi(v)\}:\{u, v\} \in E(\mathrm{G})\} .
$$

A k-walk or walk of length k in a graph G is a $(k+1)$-tuple $\left(v_{0}, \ldots, v_{k}\right) \in V^{k+1}$ such that $\left\{v_{i-1}, v_{i}\right\} \in E$ for all $1 \leqslant i \leqslant k$, and a walk in G is simply any k-walk in G. For example, $(1,2,3,4)$ and $(1,2,3,2,1)$ are walks in the graph of figure 1.1 , whereas $(1,2,3,5)$ is not a walk. We also use the terminology "a walk from v_{0} to v_{k} " to describe $\left(v_{0}, \ldots, v_{k}\right)$.

A walk $\left(v_{0}, \ldots, v_{k}\right)$ is said to be a path if in addition to being a walk, we have that v_{0}, \ldots, v_{k} are all distinct.

A subgraph of a graph G is a graph H such that $V(\mathrm{H}) \subseteq V(\mathrm{G})$ and $E(\mathrm{H}) \subseteq E(\mathrm{G})$. Given any subset $U \subseteq V(\mathrm{G})$, then the induced subgraph on the vertices of U is the subgraph H with $V(\mathrm{H})=U$ and $E(\mathrm{H})=E(\mathrm{G}) \cap\binom{U}{2}$. This subgraph H is usually denoted $\mathrm{G}[U]$ or $G \upharpoonright U$.

A graph is said to be connected if for every pair of vertices $\{u, v\} \in\binom{V}{2}$, there is a walk from u to v. Otherwise, we say the graph is disconnected. The largest subgraphs of a disconnected graph (with respect to number of vertices) which are connected are called the components of that graph. If a graph G has a k-walk $\left(v_{0}, \cdots, v_{k}\right)$ such that all v_{0}, \ldots, v_{k-1} are distinct and $v_{0}=v_{k}$, then this walk is said to be a k-cycle or simply a cycle. If k is odd or even, we use the terminology odd (even) cycle.

A graph is said to be bipartite if its vertex set V can be split as $V=V_{1} \cup V_{2}$, where we call V_{1} and V_{2} the partite sets, such that $V_{1} \cap V_{2}=\emptyset$, and for all $\{u, v\} \in E$, either $u \in V_{1}$ and $v \in V_{2}$ or $u \in V_{2}$ and $v \in V_{1}$. In other words, the vertex set V can be split into two disjoint sets such that all edges in the graph are from one of these sets to the other.

We denote vectors in \mathbb{R}^{n} using the usual notation $\boldsymbol{v}=\left(v_{i}\right)$ or $\left(v_{i}\right)_{n}$, where $v_{i}:[n] \rightarrow \mathbb{R}$ denotes the general i th entry, and similarly for matrices we write $\mathbf{A}=\left(a_{i j}\right)\left(\right.$ or $\left(a_{i j}\right)_{m \times n}$ when we wish to emphasise the dimensions), where $a_{i j}$ is the entry in the i th row and j th column, i.e., the $i j$ th entry. The i th entry of a vector $\boldsymbol{v} \in \mathbb{R}^{n}$ can be accessed using the notation $[\boldsymbol{v}]_{i}$, and similarly the $i j$ th entry of a matrix \mathbf{M} is denoted by $[\mathbf{M}]_{i j}$.

The all-ones vector $(1, \ldots, 1)=(1)_{n}$ will be denoted by \boldsymbol{j}, and the all-ones matrix $(1)_{n \times n}$, i.e., the $n \times n$ matrix with ones everywhere, will be denoted by \mathbf{J}.

The adjacency matrix of a graph G , denoted $\mathbf{A}(\mathrm{G})$ or simply \mathbf{A} when the context is clear, is the symmetric $n \times n$ matrix $\left(a_{i j}\right)$, where

$$
a_{i j}= \begin{cases}1 & \text { if }\{i, j\} \in E(\mathrm{G}), \\ 0 & \text { otherwise }\end{cases}
$$

We use terminology from linear algebra about a graph G in reference to its adjacency matrix A. For example, the eigenvalues and eigenvectors of a graph G are respectively those of the matrix \mathbf{A}.

If two graphs G and H have the same eigenvalues and multiplicities, then they are said to be cospectral.

Let V be a finite dimensional vector space with dimension n. We denote the eigenspace $\{\boldsymbol{v} \in V: \mathbf{A} \boldsymbol{v}=\lambda \boldsymbol{v}\}$ of a matrix $\mathbf{A}: V \rightarrow V$ corresponding to the eigenvalue λ by $\mathcal{E}_{\mathbf{A}}(\lambda)$ or simply $\mathcal{E}(\lambda)$. If \mathbf{A} is the adjacency matrix of a graph G , we may also write $\mathcal{E}_{\mathbf{G}}(\lambda)$.

The n-cycle, denoted C_{n}, is the graph $([n],\{\{i, i+1\}: i \in[n-1]\} \cup\{\{n, 1\}\})$, and the complete graph on n vertices, denoted K_{n}, is the graph $\left([n],\binom{[n]}{2}\right)$.

Let G be a graph. The complement of G is another graph $\overline{\mathrm{G}}$ with the same vertex set $V(\overline{\mathrm{G}})=V(\mathrm{G})$, but complement edge set $E(\overline{\mathrm{G}})=\binom{V}{2} \backslash E(\mathrm{G})$. In other words, $\{u, v\} \in E(\overline{\mathrm{G}})$ if and only if $\{u, v\} \notin E(\mathrm{G})$, and vice-versa.

Let $\mathrm{G}_{1}, \ldots, \mathrm{G}_{k}$ be graphs. Then the sum or union of $\mathrm{G}_{1}, \ldots, \mathrm{G}_{k}$, denoted by $\mathrm{G}_{1}+\cdots+\mathrm{G}_{k}$ or $\sum_{i=1}^{k} \mathrm{G}_{i}$, is the graph G with vertex set $V(\mathrm{G})=\bigcup_{i=1}^{k} V\left(\mathrm{G}_{i}\right) \times\{i\}$ and edges $E(\mathrm{G})=$ $\bigcup_{i=1}^{k}\left\{\{(u, i),(v, i)\}:\{u, v\} \in E\left(\mathrm{G}_{i}\right)\right\}$. The sum $\sum_{i=1}^{n} \mathrm{G}$ of n copies of G with itself is denoted by $n \mathrm{G}$. Clearly if a graph G is disconnected and has components $\mathrm{G}_{1}, \ldots, \mathrm{G}_{k}$, then $\mathrm{G} \simeq \sum_{i=1}^{k} \mathrm{G}_{i}$. If one of the components is isomorphic to K_{1}, then it is said to be an isolated vertex.

1.2 Some Basic Results

In this section we give proofs for some very straightforward results which will be assumed throughout the dissertation.

Proposition 1.2 (Handshaking Lemma). Let $\mathrm{G}=(V, E)$ be a graph. Then

$$
\sum_{v \in V} \operatorname{deg}(v)=2|E| .
$$

Proof. By definition, deg v counts the number of edges incident to the vertex v. Therefore when summing all the degrees, each edge is counted once by each vertex to which it is incident. But every edge is incident to precisely two vertices, so each edge is counted twice, giving a total of $2|E|$.

A more formal proof of the Handshaking lemma would involve expressing $\operatorname{deg}(v)$ in terms of $N(v)$ and interchanging summations. This is the so-called double counting proof technique.

Proposition 1.3. A graph is bipartite if and only if it contains no odd cycles.

Proof. Suppose a graph G contains an odd cycle $\left(v_{0}, \ldots, v_{2 k+1}\right)$. If we try to partition the vertices of G into two partite sets V_{1} and V_{2}, then we have to place adjacent vertices in the cycle in separate sets. Without loss of generality, place $v_{0}, v_{2}, \ldots, v_{2 k}$ in V_{1}, and $v_{1}, v_{3}, \ldots, v_{2 k-1}$ in V_{2}. But $v_{2 k+1}=v_{0}$, so we cannot place it in V_{1} (since it is adjacent to $v_{2 k}$) nor in V_{2} (since it is adjacent to v_{1}). Thus V cannot be partitioned, and therefore G is not bipartite.

For the converse, first observe that if G is disconnected, and each component $\mathrm{G}_{1}, \ldots, \mathrm{G}_{k}$ is bipartite, each with partite sets U_{1} and U_{1}^{\prime}, U_{2} and $U_{2}^{\prime}, \ldots, U_{k}$ and U_{k}^{\prime}, then $U=\bigcup_{i=1}^{k} U_{i}$ and $U^{\prime}=\bigcup_{i=1}^{k} U_{i}^{\prime}$ gives partite sets for G . Thus, it suffices to prove the converse for a connected graph.

Suppose G is connected and has no odd cycles. Pick a vertex $v \in V(G)$. Define $N_{0}(v)=$ $\{v\}, N_{k+1}(v)=\bigcup_{u \in N(v)} N_{k}(u)$, and consider the sets $V_{1}=\bigcup_{k=0}^{n} N_{2 k}(v)$ and $V_{2}=$ $\bigcup_{k=0}^{n} N_{2 k+1}(v)$, where $n=|V|$. Clearly since G is connected, $V_{1} \cup V_{2}=V$. Now suppose two vertices $u, w \in V_{1}$ are connected by an edge. Being in V_{1}, there are distinct integers k, ℓ so that $u \in N_{2 k}(v)$ and $w \in N_{2 \ell}(v)$. Without loss of generality, say $k<\ell$. Then by the construction of the sets V_{1} and V_{2}, there is a path $\left(u=u_{2 k}, u_{2 k+1}, \ldots, u_{2 \ell}=w\right)$ where each $u_{i} \in N_{i}(v)$. But this path contains an odd number of vertices, and since u is joined to w, we get an odd cycle, which contradicts the hypothesis.

Thus no two vertices in V_{1} can be joined by an edge, and similarly for V_{2}. So G is bipartite.

Proposition 1.4. For any graph G, we have

$$
\mathbf{A}(\overline{\mathrm{G}})=\mathbf{J}-\mathbf{I}-\mathbf{A}(\mathrm{G})
$$

Proof. Let $\bar{a}_{i j}=[\mathbf{A}(\overline{\mathrm{G}})]_{i j}$. Then the claim is $\bar{a}_{i j}=1-\delta_{i j}-a_{i j}$, where $\delta_{i j}$ is the Kronecker delta. ${ }^{1}$ Clearly when $\{i, j\} \in E$, the formula gives $\bar{a}_{i j}=0$, whereas when $\{i, j\} \neq E$, it gives $\bar{a}_{i j}=1$, as desired. When $i=j,\{i, j\}=\{i\} \notin\binom{V}{2}$, so we need the $-\delta_{i j}$ to make the diagonal zero.

[^1]Proposition 1.5. Let $\mathrm{G}_{1}, \ldots, \mathrm{G}_{k}$ be graphs. Then

$$
\mathbf{A}\left(\mathrm{G}_{1}+\cdots+\mathrm{G}_{k}\right)=\left(\begin{array}{ccc}
\mathbf{A}\left(\mathrm{G}_{1}\right) & & \mathbf{O} \\
& \ddots & \\
\mathbf{O} & & \boxed{\mathbf{A}\left(\mathrm{G}_{k}\right)}
\end{array}\right) .
$$

Proof. We prove the case $k=2$, the general case follows by induction. If G_{1} has n_{1} vertices and G_{2} has n_{2} vertices, then $\mathrm{G}_{1}+\mathrm{G}_{2}$ has $n_{1}+n_{2}$ vertices, labelled $(1,1), \ldots,\left(n_{1}, 1\right)$, $(1,2), \ldots,\left(n_{2}, 2\right)$ by definition. Clearly the adjacencies between $(1,1), \ldots,\left(n_{1}, 1\right)$ are the same as those of G_{1}, and the adjacencies between $(1,2), \ldots,\left(n_{2}, 2\right)$ are the same as those of G_{2}. There is no edge of the form $\{(u, 1),(v, 2)\}$. Hence the adjacency matrix is

$$
\mathbf{A}\left(\mathrm{G}_{1}+\mathrm{G}_{2}\right)=\left(\begin{array}{c|c}
\mathbf{A}\left(\mathrm{G}_{1}\right) & \mathbf{O} \\
\hline \mathbf{O} & \mathbf{A}\left(\mathrm{G}_{2}\right)
\end{array}\right),
$$

as required.

1.3 Document Structure

In the first chapter, we give some preliminary results, mostly about linear algebra, which the reader might not have come across in typical/standard treatments. In particular, the results are aimed to be used with the adjacency matrix of a graph. The chapter ends with a result on polynomials which will be utilised in the following chapter.

The second chapter introduces the ideas of main eigenvectors, main eigenvalues, main polynomials, and main eigenspaces. The number of walks N_{k} of length k is expressed solely in terms of the main angles and main eigenvalues of a graph. Generating functions for N_{k} are derived, and the main polynomial $m_{\mathrm{G}}(x)$ is shown to have integer coefficients. These concepts are then applied to obtain results on walk matrices.

In the third chapter, canonical double covers are introduced and some standard facts are proven about them. Some original results are presented in this chapter, in particular the proofs of theorem 4.4 and the hierarchical results of section 4.3.

Finally in the appendix, a list of all pairs of non-isomorphic graphs on $n \leqslant 8$ vertices having the same canonical double cover is presented.

CHAPTER 2

Preliminary Matrix Theory

> "We think basis-free, we write basis-free, but when the chips are down, we close the office door and compute with matrices like fury." Irving Kaplansky

In this chapter, we provide proofs of some fairly common algebraic results which concern symmetric $(0,1)$-matrices.

2.1 Permutation Matrices

First we go to the notion of a permutation matrix. These are matrices whose columns are simply permutations of the columns of the identity matrix. We define them as follows.

Definition 2.1 (Permutation Matrix). A square matrix $\mathbf{P}=\left(p_{i j}\right)$ is said to be a permutation matrix if each row and column contains precisely one 1 , and the remaining entries are zero.

More precisely, for each fixed i, there is precisely one $j=j^{\prime}$ such that $p_{i j^{\prime}}=1$, and $p_{i j}=0$ otherwise. Similarly, for each fixed j, there is precisely one $i=i^{\prime}$ such that $p_{i^{\prime} j}=1$, and $p_{i j}=0$ otherwise.

Using a pigeonhole argument, one can easily see that permutation matrices correspond to permutations of the columns of the identity. Indeed, there is a natural correspondence: any permutation $\pi:[n] \rightarrow[n]$ of the numbers $1, \ldots, n$ corresponds to the permutation $\operatorname{matrix} \mathbf{P}_{\pi}=\left(p_{i j}\right)$, where $p_{i j}=1$ if $\pi(i)=j$, and $p_{i j}=0$ otherwise. Consequently, the number of $n \times n$ permutation matrices is $n!$.

A basic fact about permutation matrix is that they are orthogonal:

Proposition 2.2. Let \mathbf{P} be a permutation matrix. Then $\mathbf{P P}^{\top}=\mathbf{I}$.

Proof. If $\mathbf{P}=\left(p_{i j}\right)_{n \times n}$, then

$$
\left[\mathbf{P P}^{\top}\right]_{i j}=\sum_{k=1}^{n} p_{k i} p_{k j}= \begin{cases}1 & \text { if } i=j \\ 0 & \text { otherwise },\end{cases}
$$

as required.

Moreover, permutation matrices are the only orthogonal matrices having non-negative entries:

Proposition 2.3. Let $\mathbf{P}=\left(p_{i j}\right)$ be an $n \times n$ matrix with $p_{i j} \geqslant 0$ for all $i, j \in[n]$ and $\mathbf{P P}^{\boldsymbol{\top}}=\mathbf{I}$. Then \mathbf{P} is a permutation matrix.

Proof. Each row and column of \mathbf{P} must contain at least one non-zero entry, otherwise $\mathbf{P} \mathbf{P}^{\top} \neq \mathbf{I}$ since the product will have a row/column of zeros.

Now suppose two entries of \mathbf{P} in the i th row are non-zero, say $p_{i j}$ and $p_{i j^{\prime}}$ where $j \neq j^{\prime}$. But then the entry in the $j j^{\prime}$ th position in $\mathbf{P P}^{\top}$ will not be zero, a contradiction. A similar argument yields the corresponding fact for columns.

Finally, suppose one of the non-zero entries of \mathbf{P} is not equal to 1 , say in the $i j$ th position. Then the entry in the $j j$ th position of $\mathbf{P} \mathbf{P}^{\top}$ is $\sum_{k=1}^{n} p_{k j}^{2}=p_{i j}^{2} \neq 1$, a contradiction.

Remark 2.4 (Birkhoff-von Neumann). A famous result about permutation matrices is the so-called Birkhoff-von Neumann theorem.

A matrix $\mathbf{A}=\left(a_{i j}\right)$ is said to be doubly stochastic if the sum of each row and column is 1, i.e., if for all i and for all j, we have $\sum_{k=1}^{n} a_{i k}=\sum_{k=1}^{n} a_{k j}=1$. Such matrices are of interest in probability theory, particularly when representing Markov chains.

Clearly all permutations are doubly stochastic. Moreover, according to the theorem: every $n \times n$ doubly stochastic matrix may be written as a convex combination of the $n!$ different $n \times n$ permutation matrices $\mathbf{P}_{1}, \ldots, \mathbf{P}_{n!}$. In other words, if \mathbf{A} is doubly stochastic, then there exist $\alpha_{1}, \ldots, \alpha_{n!} \in \mathbb{R}$ with $\alpha_{1}+\cdots+\alpha_{n!}=1$ so that we may decompose \mathbf{A} as

$$
\mathbf{A}=\alpha_{1} \mathbf{P}_{1}+\cdots+\alpha_{n!} \mathbf{P}_{n!}
$$

Even though there are potentially n ! terms in such a decomposition, it has been shown that there are never more than $(n-1)^{2}+1$ terms necessary, although determining the minimal expansion is NP-hard. ${ }^{[12]}$

We only mention this theorem here, but do not provide a proof, as we will not be making use of it in later chapters.

Now we go to perhaps the most important use of permutation matrices as far as we are concerned-they provide us with an equivalent formulation of the notion of graph isomorphism.

Proposition 2.5. Let G and H be two graphs having adjacency matrices $\mathbf{A}_{\mathrm{G}}=\left(g_{i j}\right)$ and $\mathbf{A}_{\mathbf{H}}=\left(h_{i j}\right)$ respectively. Then $\mathbf{G} \simeq \mathbf{H}$ if and only if there exists a permutation matrix \mathbf{P} such that $\mathbf{P}^{\boldsymbol{\top}} \mathbf{A}_{\mathrm{G}} \mathbf{P}=\mathbf{A}_{\mathbf{H}}$.

Proof. Suppose G and H are isomorphic, i.e., there is a bijection $\pi: V(\mathrm{G}) \rightarrow V(\mathrm{H})$ such that $\{u, v\} \in E(\mathrm{G})$ if and only if $\{\pi(u), \pi(v)\} \in E(\mathrm{H})$. Define the $n \times n$ matrix $\mathbf{P}=\left(p_{i j}\right)$ by

$$
p_{i j}= \begin{cases}1 & \text { if } \pi(i)=j \\ 0 & \text { otherwise }\end{cases}
$$

i.e., there is a 1 in row i and column j if vertex i in G is relabelled to j in H, and a 0 otherwise. Since π is a bijection, fixing i, one has that $p_{i j}$ can only be 1 for a single value of j and 0 otherwise; similarly if j is fixed, there is only one value of i such that $p_{i j}=1$. Thus each row and column of \mathbf{P} contains precisely one 1 , making it a permutation matrix.

Now by matrix multiplication, the $i j$ th entry of $\mathbf{P}^{\top} \mathbf{A}_{G} \mathbf{P}$ is

$$
\sum_{k=1}^{n} \sum_{\ell=1}^{n} p_{k i} g_{k \ell} p_{\ell j}=p_{u i} g_{u v} p_{v j}
$$

since by definition of $p_{i j}$ and $g_{i j}$, the terms in this double sum can only be non-zero if there are $u, v \in V(\mathrm{G})$ such that $\pi(u)=i,\{u, v\} \in E(\mathrm{G})$, and $\pi(v)=j$; which is true if and only if $\{\pi(u), \pi(v)\}=\{i, j\} \in E(\mathrm{H})$. In other words,

$$
\sum_{k=1}^{n} \sum_{\ell=1}^{n} p_{k i} g_{k \ell} p_{\ell j}=\left\{\begin{array}{ll}
1 & \text { if }\{i, j\} \in E(\mathrm{H}) \\
0 & \text { otherwise }
\end{array}=h_{i j},\right.
$$

and so $\mathbf{P}^{\top} \mathbf{A}_{\mathbf{G}} \mathbf{P}=\left(h_{i j}\right)=\mathbf{A}_{\boldsymbol{H}}$.

Conversely, suppose $\mathbf{P}=\left(p_{i j}\right)$ is a permutation matrix such that $\mathbf{P}^{\boldsymbol{\top}} \mathbf{A}_{\mathbf{G}} \mathbf{P}=\mathbf{A}_{\mathrm{H}}$, and define

$$
\pi=\left\{i \mapsto j: p_{i j}=1\right\}
$$

Clearly π is a bijection from $V(\mathrm{G})$ to $V(\mathrm{H})$, since for each i there is a j such that $p_{i j}=1$, and vice-versa. Moreover,

$$
\begin{aligned}
\{u, v\} \in E(\mathrm{G}) & \Longleftrightarrow g_{u v}=1 \\
& \Longleftrightarrow p_{u i} g_{u v} p_{v j}=1 \quad(\text { where } \pi(i)=u, \pi(j)=v) \\
& \Longleftrightarrow p_{u i} g_{u v} p_{v j}+0=1 \\
& \Longleftrightarrow p_{u i} g_{u v} p_{v j}+\sum_{\substack{k=1 \\
k \neq u}}^{n} \sum_{\substack{\ell=1 \\
\ell \neq v}}^{n} p_{k i} g_{k \ell} p_{\ell j}=1 \\
& \Longleftrightarrow \sum_{k=1}^{n} \sum_{\ell=1}^{n} p_{k i} g_{k \ell} p_{\ell j}=1 \\
& \Longleftrightarrow h_{i j}=1 \Longleftrightarrow\{i, j\}=\{\pi(u), \pi(v)\} \in E(\mathrm{H})
\end{aligned}
$$

i.e., $\mathrm{G} \simeq \mathrm{H}$, as required.

An immediate consequence of this result is the following.
Corollary 2.6. Let G and H be isomorphic graphs. Then G and H have the same:
(i) rank,
(iv) trace,
(ii) characteristic polynomial,
(v) eigenvalues and multiplicities,
(iii) determinant,
(vi) minimum polynomial.

Proof. Since $G \simeq H$, then there is a permutation matrix \mathbf{P} such that $\mathbf{P}^{\top} \mathbf{A}_{G} \mathbf{P}=\mathbf{A}_{\mathrm{H}}$. Moreover, since \mathbf{P} is a permutation matrix, then by proposition $2.2 \mathbf{P}^{\top}=\mathbf{P}^{-1}$, so in fact $\mathbf{P}^{-1} \mathbf{A}_{G} \mathbf{P}=\mathbf{A}_{\mathrm{H}}$. Hence the adjacency matrices are similar, and thus properties (i)-(vi) follow immediately by usual linear algebra theory on similar matrices.

Therefore, since isomorphic graphs have many properties in common, we will not give importance to the labelling of the vertices, and omit vertex numbering in future figures and examples (unless it makes a difference to our considerations).

2.2 Spectral Results

Some important facts about eigenvalues and eigenvectors are more fruitful when we restrict our considerations to adjacency matrices of graphs.

Suppose $V=V(\mathbb{C})$ is a complex vector space of finite dimension with basis $\left\{\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{n}\right\}$. Then $\langle\cdot, \cdot\rangle: V \times V \rightarrow \mathbb{R}$ defined by $\langle\boldsymbol{x}, \boldsymbol{y}\rangle=\boldsymbol{x}^{\top} \overline{\boldsymbol{y}}$, where the bar denotes complex conjugation, defines an inner product on V; that is, the following properties hold:

$$
\langle\boldsymbol{x}+\boldsymbol{y}, \boldsymbol{z}\rangle=\langle\boldsymbol{x}, \boldsymbol{z}\rangle+\langle\boldsymbol{y}, \boldsymbol{z}\rangle, \text { and }
$$

(i) $\langle\lambda \boldsymbol{x}, \boldsymbol{y}\rangle=\lambda\langle\boldsymbol{x}, \boldsymbol{y}\rangle$,
(ii) $\langle\boldsymbol{x}, \boldsymbol{y}\rangle=\overline{\langle\boldsymbol{y}, \boldsymbol{x}\rangle}$,
(iii) $\langle\boldsymbol{x}, \boldsymbol{x}\rangle \geqslant 0$, and $\langle\boldsymbol{x}, \boldsymbol{x}\rangle=\mathbf{0} \Longleftrightarrow \boldsymbol{x}=\mathbf{0}$.
(Linearity in the first coordinate)

An operator $\mathbf{A}: V \rightarrow V$ is Hermitian if for all $\boldsymbol{x}, \boldsymbol{y} \in V,\langle\mathbf{A} \boldsymbol{x}, \boldsymbol{y}\rangle=\langle\boldsymbol{x}, \mathbf{A} \boldsymbol{y}\rangle$.
Proposition 2.7. Let $\mathbf{A}: V \rightarrow V$ be an operator. Then \mathbf{A} is Hermitian if and only if $\mathbf{A}=\overline{\mathbf{A}}^{\top}$.

Proof. Suppose A Hermitian. Then

$$
a_{i j}=\left\langle\mathbf{A} \boldsymbol{b}_{i}, \boldsymbol{b}_{j}\right\rangle=\left\langle\boldsymbol{b}_{i}, \mathbf{A} \boldsymbol{b}_{j}\right\rangle=\overline{\left\langle\mathbf{A} \boldsymbol{b}_{j}, \boldsymbol{b}_{i}\right\rangle}=\overline{a_{j i}},
$$

so $\mathbf{A}=\overline{\mathbf{A}}^{\top}$. Conversely, suppose $\overline{\mathbf{A}}^{\top}=\mathbf{A}$. Thus for any $\boldsymbol{x}, \boldsymbol{y} \in V$,

$$
\langle\mathbf{A} \boldsymbol{x}, \boldsymbol{y}\rangle=\overline{\mathbf{A}} \boldsymbol{x}^{\top} \boldsymbol{y}=\overline{\boldsymbol{x}}^{\top} \overline{\mathbf{A}}^{\top} \boldsymbol{y}=\overline{\boldsymbol{x}}^{\top} \mathbf{A} \boldsymbol{y}=\langle\boldsymbol{x}, \mathbf{A} \boldsymbol{y}\rangle,
$$

thus \mathbf{A} is Hermitian, as required.
Since the adjacency matrix of a graph is real and symmetric, it follows that it is a Hermitian operator.

2.2.1 Orthogonal Projections

Now we take a look at orthogonal projections, which help us obtain the spectral decomposition of an operator.

Definition 2.8 (Orthogonal Projection). The orthogonal projection of \boldsymbol{v} onto \boldsymbol{u}, where

Figure 2.1: Illustration of definition 2.8 in \mathbb{R}^{2}.
$\boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^{n}, \boldsymbol{u} \neq \mathbf{0}$, denoted $\mathbf{P}_{\boldsymbol{u}}(\boldsymbol{v})$, is the vector given by

$$
\mathbf{P}_{u}(\boldsymbol{v})=\frac{\langle\boldsymbol{v}, \boldsymbol{u}\rangle}{\|\boldsymbol{u}\|^{2}} \boldsymbol{u}
$$

More generally, the orthogonal projection of \boldsymbol{v} onto a subspace $U \leqslant V$, denoted $\mathbf{P}_{U}(\boldsymbol{v})$, is the vector

$$
\mathbf{P}_{U}(\boldsymbol{v})=\sum_{i=1}^{r} \mathbf{P}_{\boldsymbol{u}_{i}}(\boldsymbol{v})
$$

where $\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{r}\right\}$ is an orthonormal basis for U.
Even though we define the orthogonal projection $\mathbf{P}_{U}: V \rightarrow U$ in terms of some orthonormal basis of U, it is in fact independent of which orthonormal basis is chosen. This follows from the following fact.

Proposition 2.9. Let $U \leqslant V$ be a subspace, and let $\boldsymbol{v} \in V$. Then $\mathbf{P}_{U}(\boldsymbol{v})$ is the unique $\boldsymbol{u} \in U$ such that $\langle\boldsymbol{v}-\boldsymbol{u}, \boldsymbol{x}\rangle=0$ for all $\boldsymbol{x} \in U$.

Proof. Fix an orthonormal basis $\left\{\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{r}\right\}$ for U. Clearly for any \boldsymbol{u}_{j},

$$
\begin{aligned}
\left\langle\boldsymbol{v}-\mathbf{P}_{U}(\boldsymbol{v}), \boldsymbol{u}_{j}\right\rangle & =\left\langle\boldsymbol{v}-\sum_{i=1}^{r} \frac{\left\langle\boldsymbol{v}, \boldsymbol{u}_{i}\right\rangle}{\left\|\boldsymbol{u}_{i}\right\|^{2}} \boldsymbol{u}_{i}, \boldsymbol{u}_{j}\right\rangle \\
& =\left\langle\boldsymbol{v}, \boldsymbol{u}_{j}\right\rangle-\sum_{i=1}^{r} \frac{\left\langle\boldsymbol{v}, \boldsymbol{u}_{i}\right\rangle}{\left\|\boldsymbol{u}_{i}\right\|^{2}}\left\langle\boldsymbol{u}_{i}, \boldsymbol{u}_{j}\right\rangle \\
& =\left\langle\boldsymbol{v}, \boldsymbol{u}_{j}\right\rangle-\left\langle\boldsymbol{v}, \boldsymbol{u}_{j}\right\rangle-\sum_{i \neq j} \frac{\left\langle\boldsymbol{v}, \boldsymbol{u}_{i}\right\rangle}{\left\|\boldsymbol{u}_{i}\right\|^{2}} \underbrace{\left\langle\boldsymbol{u}_{i}, \boldsymbol{u}_{j}\right\rangle}_{=0} \\
& =0
\end{aligned}
$$

and hence for any vector $\sum_{i=1}^{r} \alpha_{i} \boldsymbol{u}_{i}$ in U, we have

$$
\left\langle\boldsymbol{v}-\mathbf{P}_{U}(\boldsymbol{v}), \sum_{i=1}^{r} \alpha_{i} \boldsymbol{u}_{i}\right\rangle=\sum_{i=1}^{r} \alpha_{i}\left\langle\boldsymbol{v}-\mathbf{P}_{U}(\boldsymbol{v}), \boldsymbol{u}_{i}\right\rangle=0 .
$$

Now to show that there is only one vector with this property, suppose there are two vectors $\boldsymbol{u}, \boldsymbol{u}^{\prime}$ such that for any $\boldsymbol{x} \in U,\langle\boldsymbol{v}-\boldsymbol{u}, \boldsymbol{x}\rangle=\left\langle\boldsymbol{v}-\boldsymbol{u}^{\prime}, \boldsymbol{x}\right\rangle=0$. Then for any $\boldsymbol{x} \in U$,

$$
\begin{aligned}
& \langle\boldsymbol{v}-\boldsymbol{u}, \boldsymbol{x}\rangle-\left\langle\boldsymbol{v}-\boldsymbol{u}^{\prime}, \boldsymbol{x}\right\rangle=0 \\
\Longrightarrow & \left\langle(\boldsymbol{v}-\boldsymbol{u})-\left(\boldsymbol{v}-\boldsymbol{u}^{\prime}\right), \boldsymbol{x}\right\rangle=0 \\
\Longrightarrow & \left\langle\boldsymbol{u}-\boldsymbol{u}^{\prime}, \boldsymbol{x}\right\rangle=0 \\
\Longrightarrow & \left\langle\boldsymbol{u}-\boldsymbol{u}^{\prime}, \boldsymbol{u}-\boldsymbol{u}^{\prime}\right\rangle=0 \quad \text { since } \boldsymbol{u}-\boldsymbol{u}^{\prime} \in U \\
\Longrightarrow & \boldsymbol{u}=\boldsymbol{u}^{\prime} .
\end{aligned}
$$

Since the projection of \boldsymbol{v} onto U is the unique vector satisfying the property of proposition 2.9, then the orthonormal basis chosen does not make a difference.

A nice property about projections is their idempotency.
Proposition 2.10. Let $U \leqslant V$ be a subspace. Then $\mathbf{P}_{U}{ }^{2}=\mathbf{P}_{U}$.
Proof. Let $\boldsymbol{v} \in V$. By proposition 2.9, the projection $\boldsymbol{u}=\mathbf{P}_{U}(\boldsymbol{v})$ is the unique $\boldsymbol{u} \in U$ such that $\langle\boldsymbol{v}-\boldsymbol{u}, \boldsymbol{x}\rangle=0$ for all $\boldsymbol{x} \in U$. Similarly, $\boldsymbol{u}^{\prime}=\mathbf{P}_{U}(\boldsymbol{u})=\mathbf{P}_{U}{ }^{2}(\boldsymbol{v})$ is the unique $\boldsymbol{u}^{\prime} \in U$ such that $\left\langle\boldsymbol{u}-\boldsymbol{u}^{\prime}, \boldsymbol{x}\right\rangle=0$. But $\left\langle\boldsymbol{u}-\boldsymbol{u}^{\prime}, \boldsymbol{x}\right\rangle=0 \Longrightarrow\langle\boldsymbol{u}, \boldsymbol{x}\rangle=\left\langle\boldsymbol{u}^{\prime}, \boldsymbol{x}\right\rangle$ for all \boldsymbol{x}. It follows that $\boldsymbol{u}=\boldsymbol{u}^{\prime}$, i.e., that $\mathbf{P}_{U}(\boldsymbol{v})=\mathbf{P}_{U}{ }^{2}(\boldsymbol{v})$.

Another useful property of projections is the following.
Proposition 2.11. Let $\mathbf{P}_{U}: V \rightarrow U$ be a projection, and let $B_{V}=\left\{\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{n}\right\}$ be an orthonormal basis for V, a subset B_{U} of which forms a basis for U. With respect to this basis, \mathbf{P}_{U} has matrix representation

$$
\mathbf{P}_{U}=\left(\begin{array}{cccc}
e_{1} & 0 & \cdots & 0 \\
0 & e_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & e_{n}
\end{array}\right)
$$

where $e_{i}=1$ if $\boldsymbol{b}_{i} \in B_{U}$, and $e_{i}=0$ otherwise.

Proof. Let $\boldsymbol{v}=\alpha_{1} \boldsymbol{b}_{1}+\cdots+\alpha_{n} \boldsymbol{b}_{n} \in V$. Then

$$
\begin{aligned}
\mathbf{P}_{U}(\boldsymbol{v})=\sum_{\boldsymbol{b} \in B_{U}} \frac{\langle\boldsymbol{v}, \boldsymbol{b}\rangle}{\|\boldsymbol{b}\|^{2}} \boldsymbol{b}= & \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{j} e_{i} \underbrace{\left\langle\boldsymbol{b}_{j}, \boldsymbol{b}_{i}\right\rangle}_{\substack{=0 \text { unless } \\
\boldsymbol{b}_{i}=\boldsymbol{b}_{j}}} \boldsymbol{b}_{i}=\sum_{i=1}^{n} \alpha_{i} e_{i} \boldsymbol{b}_{i} \\
= & \left(\begin{array}{cccc}
e_{1} & 0 & \cdots & 0 \\
0 & e_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & e_{n}
\end{array}\right)\left(\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\vdots \\
\alpha_{n}
\end{array}\right)
\end{aligned}
$$

as required.

As a consequence of this matrix representation, we have the following easy corollaries.
Corollary 2.12. Suppose $V=\bigoplus_{i=1}^{s} U_{i}$. Then

$$
\sum_{i=1}^{s} \mathbf{P}_{U_{i}}=\mathbf{I}
$$

Proof. $B=\bigcup_{i=1}^{s} B_{U_{i}}$ is an orthonormal basis for V, where $B_{U_{i}}$ is an orthonormal basis for each U_{i}. The matrix representation of each $\mathbf{P}_{U_{i}}$ is as in proposition 2.11. Any overlap of diagonal entries amongst the $\mathbf{P}_{U_{i}}$'s contradicts that the sum is direct, whereas any diagonal entry left out contradicts that B spans V.

Corollary 2.13. Let $\mathbf{P}_{U}: V \rightarrow U$ be an orthogonal projection. Then

$$
\mathbf{P}_{U} \mathbf{P}_{U}^{\top}=\mathbf{P}_{U}=\mathbf{I} \upharpoonright U .
$$

2.2.2 The Spectral Theorem

Now we go to the spectral theorem, an important result which illustrates a lot of the nice properties of Hermitian operators. In particular, it allows us to decompose them as a sum of projections onto their eigenspaces.

Theorem 2.14 (Spectral Theorem). Let A:V $\rightarrow V$ be a Hermitian operator with distinct eigenvalues μ_{1}, \cdots, μ_{s}. Then:
(i) Each eigenvalue μ of \mathbf{A} is real,
(ii) There is an orthonormal basis for V consisting solely of eigenvectors of A. Consequently $V=\bigoplus_{i=1}^{s} \mathbb{E}_{\mathbf{A}}\left(\mu_{i}\right)$,
(iii) A may be written as

$$
\mathbf{A}=\mu_{1} \mathbf{P}_{1}+\cdots+\mu_{s} \mathbf{P}_{s}
$$

where $\mathbf{P}_{i}: V \rightarrow \mathcal{E}_{\mathbf{A}}\left(\mu_{i}\right)$ is the orthogonal projection onto the eigenspace corresponding to μ_{i}.

Proof. For (i), if $\boldsymbol{v} \neq \mathbf{0}$ and $\mathbf{A} \boldsymbol{v}=\mu \boldsymbol{v}$, then

$$
\mu\|\boldsymbol{v}\|^{2}=\langle\mu \boldsymbol{v}, \boldsymbol{v}\rangle=\langle\mathbf{A} \boldsymbol{v}, \boldsymbol{v}\rangle=\langle\boldsymbol{v}, \mathbf{A} \boldsymbol{v}\rangle=\langle\boldsymbol{v}, \mu \boldsymbol{v}\rangle=\overline{\langle\mu \boldsymbol{v}, \boldsymbol{v}\rangle}=\bar{\mu}\|\boldsymbol{v}\|^{2},
$$

so $\mu=\bar{\mu}$, i.e., μ is real.
For (ii), we proceed by induction on $\operatorname{dim} V$. If V is of dimension zero, then the empty set is a basis for V and $V=\{\mathbf{0}\}$ is the result of an empty direct sum.

Suppose $\operatorname{dim} V \geqslant 1$. By the fundamental theorem of algebra, the characteristic polynomial of \mathbf{A} has a root μ and a corresponding unit eigenvector \boldsymbol{v}. Moreover by (i) above, μ is real.

Now consider the space $U=\{\boldsymbol{v}\}^{\perp}$, and note that for all $\boldsymbol{u} \in U$,

$$
\langle\mathbf{A} \boldsymbol{u}, \boldsymbol{v}\rangle=\langle\boldsymbol{u}, \mathbf{A} \boldsymbol{v}\rangle=\langle\boldsymbol{u}, \mu \boldsymbol{v}\rangle=\bar{\mu}\langle\boldsymbol{u}, \boldsymbol{v}\rangle=0,
$$

so $\mathbf{A} \boldsymbol{u} \in U$, i.e., U is A-invariant. Since $V=U \oplus U^{\perp}$ and $\operatorname{dim} U^{\perp}=1$, it follows that $\operatorname{dim} V=\operatorname{dim} U+1>\operatorname{dim} U$, so we may apply the inductive hypothesis to get an orthonormal basis B for U in terms of eigenvectors of $\mathbf{A} \upharpoonright U . B \cup\{\boldsymbol{v}\}$ gives the required basis.

Since each eigenvector of \mathbf{A} in $B \cup\{\boldsymbol{v}\}$ is in its eigenspace, and by proposition 2.17 below, eigenvectors from different eigenspaces are independent and orthogonal, it follows that $V=\bigoplus_{i=1}^{s} \mathcal{E}_{\mathbf{A}}\left(\mu_{i}\right)$.

Finally for (iii), we know that the matrix representation of \mathbf{A} in terms of a basis of
eigenvectors is diagonal. By (ii) above, \mathbf{A} has such a basis, so we can write

$$
\mathbf{A}=\left(\begin{array}{cccc}
{ }^{\mu_{1}} & & & \\
& & & \\
\mu_{1}
\end{array}\right] . \begin{gathered}
\mathbf{O} \\
\\
\\
\\
\\
\mathbf{O}
\end{gathered}
$$

where $\mu_{1}, \ldots \mu_{s}$ are the distinct eigenvalues of \mathbf{A}, each appearing $m\left(\mu_{i}\right)$ times, where $m\left(\mu_{i}\right)$ is the multiplicity of μ_{i} in the characteristic polynomial $\phi_{\mathbf{A}}$. Hence

$$
\left.\begin{array}{rl}
\mathbf{A} & =\mu_{1}\left(\begin{array}{cccc}
{ }^{1} \cdot & & & \mathbf{O} \\
& & 1
\end{array}\right. \\
& \\
& \ddots \\
\mathbf{O} & \\
\mathbf{O}
\end{array}\right)+\left(\begin{array}{ccc}
\mathbf{O} & & \\
& \ddots & \mathbf{O} \\
& & \\
\mathbf{O} & & { }^{1} \ddots_{1} \\
& & \\
1
\end{array}\right)
$$

by proposition 2.11.

Example 2.15. Suppose

$$
\mathbf{A}=\left(\begin{array}{ccc}
1 & 1 & 4 \\
1 & 1 & 4 \\
4 & 4 & -2
\end{array}\right)
$$

Then $\phi_{\mathbf{A}}(\lambda)=\lambda^{3}-36 \lambda$, so the eigenvalues of \mathbf{A} are 0 and ± 6. Moreover, the corresponding orthonormal eigenvectors of \mathbf{A} are the columns of the transition matrix

$$
\mathbf{P}=\left(\begin{array}{ccc}
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{6}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{6}} \\
0 & \frac{1}{\sqrt{3}} & \frac{2}{\sqrt{6}}
\end{array}\right)
$$

With respect to this basis, A may be written as

$$
\begin{aligned}
\mathbf{A}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 6 & 0 \\
0 & 0 & -6
\end{array}\right) & =0\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)+6\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)+-6\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \\
& =0 \mathbf{P}_{\mathcal{E}(0)}+6 \mathbf{P}_{\mathcal{E}(6)}-6 \mathbf{P}_{\mathcal{E}(6)}
\end{aligned}
$$

or, with respect to the standard basis,

$$
\mathbf{A}=0\left(\begin{array}{ccc}
\frac{1}{2} & -\frac{1}{2} & 0 \\
-\frac{1}{2} & \frac{1}{2} & 0 \\
0 & 0 & 0
\end{array}\right)+6\left(\begin{array}{ccc}
\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
\frac{1}{3} & \frac{1}{3} & \frac{1}{3}
\end{array}\right)+-6\left(\begin{array}{ccc}
\frac{1}{6} & \frac{1}{6} & -\frac{1}{3} \\
\frac{1}{6} & \frac{1}{6} & -\frac{1}{3} \\
-\frac{1}{3} & -\frac{1}{3} & \frac{2}{3}
\end{array}\right) .
$$

As a consequence, we immediately get the following.
Corollary 2.16. Let G be a graph with $|V(\mathrm{G})|=n$. Then \mathbb{R}^{n} has a basis in terms of the eigenvectors of G .

Proof. The adjacency matrix of a graph is a linear operator $\mathbf{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. Moreover, the adjacency matrix of a graph is symmetric, so by the spectral theorem the result follows.

We will also find the following fact useful.
Proposition 2.17. If $\mathbf{A}: V \rightarrow V$ is Hermitian, then any eigenvectors belonging to distinct eigenvalues are linearly independent and orthogonal.

Proof. Suppose $\mathbf{A} \boldsymbol{x}=\lambda \boldsymbol{x}$ and $\mathbf{A} \boldsymbol{y}=\mu \boldsymbol{y}$ where $\lambda \neq \mu$ and $\boldsymbol{x} \neq \mathbf{0} \neq \boldsymbol{y}$.
We do not need the Hermitian property for independence, indeed, suppose $a \boldsymbol{x}+b \boldsymbol{y}=\mathbf{0}$. Then

$$
\begin{equation*}
\mathbf{0}=\mathbf{A} \mathbf{0}=\mathbf{A}(a \boldsymbol{x}+b \boldsymbol{y})=a \lambda \mathbf{x}+b \mu \mathbf{y} \tag{2.1}
\end{equation*}
$$

Moreover, $a \boldsymbol{x}+b \boldsymbol{y}=\mathbf{0} \Longrightarrow a \lambda \boldsymbol{x}+b \lambda \boldsymbol{y}=\mathbf{0}$. Subtracting this from (2.1), we get $(\lambda-\mu) a \boldsymbol{x}=\mathbf{0}$. Since λ and μ are different and $\boldsymbol{x} \neq \mathbf{0}$, we must have that $a=0$. Multiplying $a \boldsymbol{x}+b \boldsymbol{y}=\mathbf{0}$ by μ instead similarly yields that $b=0$, as required.

Now for orthogonality, observe that

$$
\begin{aligned}
(\lambda-\bar{\mu})\langle\boldsymbol{x}, \boldsymbol{y}\rangle=\langle\lambda \boldsymbol{x}, \boldsymbol{y}\rangle-\langle\boldsymbol{x}, \mu \boldsymbol{y}\rangle & =\langle\mathbf{A} \boldsymbol{x}, \boldsymbol{y}\rangle-\langle\boldsymbol{x}, \mathbf{A} \boldsymbol{y}\rangle \\
& =\langle\mathbf{A} \boldsymbol{x}, \boldsymbol{y}\rangle-\langle\mathbf{A} \boldsymbol{x}, \boldsymbol{y}\rangle=0
\end{aligned}
$$

and since $\lambda \neq \mu=\bar{\mu}$ (eigenvalues are real by the spectral theorem), then it follows that $\langle\boldsymbol{x}, \boldsymbol{y}\rangle=0$.

2.3 Number of Walks

In this section, we make an important observation about entries of powers of the adjacency matrix of a graph; namely, that they encode the number of walks in the graph.

Theorem 2.18. Let G be a graph with adjacency matrix A. The number of walks of length k from vertex i to vertex j is the ijth entry of \mathbf{A}^{k}.

Proof. By induction on k. Let $W_{i j}(k)$ denote the set of walks of length k from i to j. For the base case,

$$
\begin{aligned}
W_{i j}(1) & =\left\{\left(v_{0}, v_{1}\right):\left\{v_{0}, v_{1}\right\} \in E, v_{0}=i \text { and } v_{1}=j\right\} \\
& =\left\{\begin{array}{cl}
\{(i, j)\} & \text { if }\{i, j\} \in E \\
\emptyset & \text { otherwise },
\end{array}\right.
\end{aligned}
$$

so $\left|W_{i j}(1)\right|=1$ if $\{i, j\} \in E$ and 0 otherwise, i.e., $\left|W_{i j}(1)\right|=a_{i j}=\left[\mathbf{A}^{1}\right]_{i j}$.
Now let $k \geqslant 1$. Then

$$
\begin{aligned}
W_{i j}(k) & =\left\{\left(v_{0}, \ldots, v_{k}\right):\left\{v_{i-1}, v_{i}\right\} \in E \text { for } 1 \leqslant i \leqslant k, v_{0}=i \text { and } v_{k}=j\right\} \\
& =\left\{\left(v_{0}, \ldots, \ell, j\right):\left(v_{0}, \cdots, \ell\right) \in W_{i \ell}(k-1) \text { and } \ell \in N(j)\right\} \\
& =\bigcup_{\ell \in N(j)}\left\{\left(v_{0}, \ldots, \ell, j\right):\left(v_{0}, \cdots, \ell\right) \in W_{i \ell}(k-1)\right\}
\end{aligned}
$$

and consequently,

$$
\begin{aligned}
\left|W_{i j}(k)\right| & =\sum_{\ell \in N(j)}\left|\left\{\left(v_{0}, \ldots, \ell, j\right):\left(v_{0}, \cdots, \ell\right) \in W_{i \ell}(k-1)\right\}\right| \\
& =\sum_{\ell=1}^{n} a_{\ell j}\left|\left\{\left(v_{0}, \ldots, \ell, j\right):\left(v_{0}, \cdots, \ell\right) \in W_{i \ell}(k-1)\right\}\right| \\
& =\sum_{\ell=1}^{n} a_{\ell j}\left|W_{i \ell}(k-1)\right|=\sum_{\ell=1}^{n}\left[\mathbf{A}^{k-1}\right]_{i \ell} a_{\ell j}=\left[\mathbf{A}^{k}\right]
\end{aligned}
$$

by the induction hypothesis.

Corollary 2.19. The number of walks of length k starting from vertex i is the i th entry of $\mathbf{A}^{k} \boldsymbol{j}$.

Proof. Let $W_{i j}(k)$ be as in the proof of theorem 2.18. The number of walks of length k
from vertex i is then

$$
\left|\bigcup_{j \in V} W_{i j}(k)\right|=\sum_{j \in V}\left|W_{i j}(k)\right|=\sum_{j \in V}\left[\mathbf{A}^{k}\right]_{i j}=\sum_{j=1}^{n}\left[\mathbf{A}^{k}\right]_{i j} 1=\left[\mathbf{A}^{k} \boldsymbol{j}\right]_{i},
$$

as required.

Corollary 2.20. Let G be a graph with adjacency matrix A, having e edges and t triangles. Then
(i) $\operatorname{tr} \mathbf{A}=0$,
(ii) $\operatorname{tr} \mathbf{A}^{2}=2 e$,
(iii) $\operatorname{tr} \mathbf{A}^{3}=6 t$.

Proof. (i) follows by definition of \mathbf{A}. For (ii), observe that the entries on the diagonal of \mathbf{A}^{2} are those walks of length 2 from a vertex to itself. At each vertex v, there are $\operatorname{deg} v$ such walks, namely (v, n, v) for $n \in N(v)$. Thus $\operatorname{tr} \mathbf{A}^{2}=\sum_{v \in V} \operatorname{deg} v=2 e$ by the handshaking lemma.

Finally for (iii), observe that each walk of length 3 from a vertex u to itself, (u, v, w, u), corresponds to a triangle. However each triangle is counted six times: indeed, (u, v, w, u), $(u, w, v, u),(v, u, w, v),(v, w, u, v),(w, u, v, w)$ and (w, v, u, w) all correspond to the same triangle $\{u, v, w\}$. Thus $\operatorname{tr} \mathbf{A}^{3}=\sum_{v \in V}\left[\mathbf{A}^{3}\right]_{i i}=6 t$.

Since the trace of a matrix is the sum of eigenvalues, then the spectrum of a graph determines the number of vertices, edges and triangles. It is difficult to generalise corollary 2.20 , as $K_{1,4}$ and $K_{1}+C_{4}$ are cospectral yet they do not have the same number of 4 -cycles.

2.4 Gauss' Lemma

We conclude this chapter with a useful result on polynomials. $\mathbb{Z}[x]$ and $\mathbb{Q}[x]$ denote the rings of polynomials over the integers and the rationals respectively. Reference was made to [9] for the results in this section.

Definitions 2.21 (Polynomial Terminology). The content of a polynomial $p=a_{0}+$ $a_{1} x+\cdots+a_{n} x^{n} \in \mathbb{Z}[x]$ is the greatest common divisor of its coefficients a_{i}.

A polynomial is said to be primitive if its content is 1 .

Clearly any polynomial $p \in \mathbb{Z}[x]$ with content c can be written as $c q(x)$ where q is primitive.

Lemma 2.22. Let $p, q \in \mathbb{Z}[x]$ be primitive polynomials. Then the product $p q$ is primitive.

Proof. Let $p=a_{0}+\cdots+a_{n} x^{n}$ and $q=b_{0}+\cdots b_{m} x^{m}$, and for contradiction, suppose that $p q$ has content $c \neq 1$. In particular, c has some prime factor d. Since p and q are primitive, then d does not divide at least one coefficient of p and of q. Let i and j be the smallest subscripts for which d does not divide a_{i} and does not divide b_{j}.

In $p q$, the coefficient of x^{i+j} is

$$
c_{i+j}=a_{i} b_{j}+\underbrace{\left(a_{i+1} b_{j-1}+\cdots+a_{i+j} b_{0}\right)}_{=: A}+\underbrace{\left(a_{i-1} b_{j+1}+\cdots+a_{0} b_{i+j}\right)}_{=: B} .
$$

By the minimality of i and j, d divides both A and B. Since d is the content of $p q, d$ also divides c_{i+j}. But the above implies that d divides $a_{i} b_{j}$, which is a contradiction, since d is prime and does not divide a_{i} nor b_{j}.

Theorem 2.23 (Gauss' Lemma). If a primitive polynomial $p \in \mathbb{Z}[x]$ can be factorised as $u(x) v(x)$ where $u, v \in \mathbb{Q}[x]$, then it can be factorised as $s(x) t(x)$ where $s, t \in \mathbb{Z}[x]$.

Proof. If $p(x)=u(x) v(x)$, then by taking out common factors and finding the lowest common denominator, we can write $p=\frac{a}{b} s(x) t(x)$ where a and b are integers and s, t are both primitive. Thus $b p(x)=a s(x) t(x)$. Since p is primitive, the content of $b p$ is b, and similarly the product $s t$ is primitive by lemma 2.22 , so the content of ast is a. Therefore $a=b$, and $p(x)=s(x) t(x)$, as required.

CHAPTER 3

Main Eigenvalues

"All truly great ideas are conceived whilst walking."

Friedrich Nietzsche
The all-ones vector $\boldsymbol{j}=(1, \ldots, 1)$ plays an important role when determining the number of walks of fixed length from a chosen starting vertex, as we have seen in corollary 2.19. In this chapter, the vector \boldsymbol{j} and its relationship with the eigenspaces of a graph are examined. Many of the ideas presented here are from [16], [6] and [14].

Definitions 3.1 (Main Eigenvalue). Let G be a graph. An eigenvalue μ of G is said to be main if the corresponding eigenspace $\mathcal{E}(\mu)$ is not orthogonal to \boldsymbol{j}, i.e., there exists $\boldsymbol{x} \in \mathcal{E}(\mu)$ such that $\langle\boldsymbol{x}, \boldsymbol{j}\rangle \neq 0$.

Two graphs having the same main eigenvalues are said to be comain.

3.1 Main Angles

Suppose that A(G) has spectral decomposition

$$
\mathbf{A}=\mu_{1} \mathbf{P}_{1}+\mu_{2} \mathbf{P}_{2}+\cdots+\mu_{s} \mathbf{P}_{s}
$$

where the first p eigenvalues $\mu_{1}, \mu_{2}, \cdots, \mu_{p}$ are main, and the remaining eigenvalues $\mu_{p+1}, \cdots, \mu_{s}$ are non-main. Then main angles $\vartheta_{1}, \ldots, \vartheta_{s}$ of G are the numbers

$$
\vartheta_{i}=\frac{1}{\sqrt{n}}\left\|\mathbf{P}_{i} \boldsymbol{j}\right\|
$$

i.e., the cosines of the angles between \boldsymbol{j} and the eigenspaces $\mathcal{E}\left(\mu_{i}\right)$. Evidently, μ_{i} is main if and only if $\vartheta_{i} \neq 0$. Moreover, since

$$
\begin{aligned}
\|\boldsymbol{j}\|^{2}=\boldsymbol{j}^{\top} \boldsymbol{j}=\boldsymbol{j}^{\top}(\underbrace{\mathbf{P}_{1}^{\top} \mathbf{P}_{1}+\cdots+\mathbf{P}_{s}^{\top} \mathbf{P}_{s}}_{=\mathbf{I}}) \boldsymbol{j} & =\left(\mathbf{P}_{1} \boldsymbol{j}\right)^{\top}\left(\mathbf{P}_{1} \boldsymbol{j}\right)+\cdots+\left(\mathbf{P}_{s} \boldsymbol{j}\right)^{\top}\left(\mathbf{P}_{s} \boldsymbol{j}\right) \\
& =\left\|\mathbf{P}_{1} \boldsymbol{j}\right\|^{2}+\cdots+\left\|\mathbf{P}_{s} \boldsymbol{j}\right\|^{2}
\end{aligned}
$$

we have that $\vartheta_{1}^{2}+\cdots+\vartheta_{p}^{2}=1$.
It is also worth noting that by the Perron-Frobenius theorem, every graph G has a unique largest eigenvalue having a corresponding eigenvector with strictly positive components. In particular, this eigenvector cannot be orthogonal to \boldsymbol{j}; so the largest eigenvalue of a graph G is always main.

The main angles of a graph give us a nice formula for the number of walks.
Proposition 3.2. Let G be a graph on n vertices, let μ_{1}, \ldots, μ_{p} be its main eigenvalues, and let N_{k} be the number of walks of length k in G . Then

$$
N_{k}=n\left(\vartheta_{1}^{2} \mu_{1}^{k}+\cdots+\vartheta_{p}^{2} \mu_{p}^{k}\right)
$$

Proof. Suppose A has spectral decomposition $\mu_{1} \mathbf{P}_{1}+\cdots+\mu_{s} \mathbf{P}_{s}$. Then

$$
\begin{aligned}
\mathbf{A} \boldsymbol{j} & =\mu_{1} \mathbf{P}_{1} \boldsymbol{j}+\cdots+\mu_{p} \mathbf{P}_{p} \boldsymbol{j}+\underbrace{\mu_{p+1} \mathbf{P}_{p+1} \boldsymbol{j}+\cdots+\mu_{s} \mathbf{P}_{s} \boldsymbol{j}}_{\text {non-main }} \\
& =\mu_{1} \mathbf{P}_{1} \boldsymbol{j}+\cdots+\mu_{p} \mathbf{P}_{p} \boldsymbol{j} \\
\Longrightarrow \mathbf{A}^{k} \boldsymbol{j} & =\mu_{1}{ }^{k} \mathbf{P}_{1} \boldsymbol{j}+\cdots+\mu_{p}{ }^{k} \mathbf{P}_{p} \boldsymbol{j} .
\end{aligned}
$$

Then by corollary 2.19,

$$
N_{k}=\sum_{i=1}^{n}\left[\mathbf{A}^{k} \boldsymbol{j}\right]_{i}=\boldsymbol{j}^{\top} \mathbf{A}^{k} \mathbf{j}=\sum_{i=1}^{p} \mu_{i}^{k} \boldsymbol{j}^{\top} \mathbf{P}_{i} \boldsymbol{j}=\sum_{i=1}^{p} \mu_{i}^{k}\left\|\mathbf{P}_{i} \boldsymbol{j}\right\|^{2}
$$

and since $\vartheta_{i}{ }^{2} n=\left\|\mathbf{P}_{i} \boldsymbol{j}\right\|^{2}$, the result follows.

3.2 The Main Polynomial

Recall that the characteristic polynomial $\phi_{\mathrm{G}}(x)$ of a graph is given by

$$
\phi_{\mathrm{G}}(x)=\operatorname{det}(x \mathbf{I}-\mathbf{A})=\prod_{i=1}^{s}\left(x-\mu_{i}\right)^{m\left(\mu_{i}\right)},
$$

where μ_{1}, \ldots, μ_{s} are the distinct eigenvalues of G having multiplicity $m\left(\mu_{i}\right)$ for $1 \leqslant i \leqslant s$. We introduce an analogous function which treats solely main eigenvalues.

Lemma 3.3. Let G be a graph. Then ϕ_{G} has integer coefficients.

Proof. Clearly each entry of $x \mathbf{I}-\mathbf{A}$ is a polynomial with integral coefficients, being either integers or terms of the form $x-a_{i i}$. Since $\operatorname{det}(x \mathbf{I}-\mathbf{A})$ is simply a sum of products of entries (by the Leibniz formula for determinant), it follows that $\operatorname{det}(x \mathbf{I}-\mathbf{A}) \in \mathbb{Z}[x]$.

Definition 3.4. Let G be a graph. The main polynomial of G , denoted $m_{\mathrm{G}}(x)$, is the polynomial

$$
m_{\mathrm{G}}(x)=\prod_{i=1}^{s}\left(x-\mu_{i}\right)
$$

where μ_{1}, \ldots, μ_{s} are the distinct main eigenvalues of G.
Note that each main eigenvalue μ_{i} has multiplicity 1 in m_{G}, regardless of its multiplicity in ϕ_{G}.

A nice fact about m_{G} is that its coefficients are always integers. Before we give a proof of this fact, we will need the following theorem due to Cvetković, which provides us with a generating function for the number of walks of length k in a graph G. ${ }^{[6]}$

Theorem 3.5 (Cvetković). Let G be a graph on n vertices with main eigenvalues μ_{1}, \ldots, μ_{p}, let N_{k} be the number of walks of length k in G .

Then we have the following generating function for N_{k} :

$$
\sum_{k=0}^{\infty} N_{k} t^{k}=\frac{1}{t}\left((-1)^{n} \frac{\phi_{\overline{\mathrm{G}}}\left(-\frac{t+1}{t}\right)}{\phi_{\mathrm{G}}\left(\frac{1}{t}\right)}-1\right)
$$

Proof. If \mathbf{M} is a non-singular $n \times n$ matrix, and \mathbf{J} is an $n \times n$ matrix consisting entirely of ones, it is straightforward to check that for any x,

$$
\begin{equation*}
\operatorname{det}(\mathbf{M}+x \mathbf{J})=\operatorname{det}(\mathbf{M})\left(1+x \sum_{i=1}^{n} \sum_{j=1}^{n}\left[\mathbf{M}^{-1}\right]_{i j}\right) \tag{3.1}
\end{equation*}
$$

In particular, we have that $N_{k}=\sum_{i=1}^{n} \sum_{j=1}^{n}\left[\mathbf{A}^{k}\right]_{i j}$ by theorem 2.18, and since for t
within a suitable convergence radius,

$$
\sum_{k=0}^{\infty} \mathbf{A}^{k} t^{k}=(\mathbf{I}-t \mathbf{A})^{-1}
$$

we get

$$
\sum_{k=0}^{\infty} N_{k} t^{k}=\sum_{k=0}^{\infty} \sum_{i=1}^{n} \sum_{j=1}^{n}\left[\mathbf{A}^{k}\right]_{i j} t^{k}=\frac{1}{t}\left(\frac{\operatorname{det}(\mathbf{I}-t \mathbf{A}+t \mathbf{J})}{\operatorname{det}(\mathbf{I}-t \mathbf{A})}-1\right)
$$

by (3.1) with $\mathbf{M}=\mathbf{I}-t \mathbf{A}$ and $x=t$. But since the adjacency matrix $\overline{\mathbf{A}}$ of $\overline{\mathrm{G}}$ is $\mathbf{J}-\mathbf{I}-\mathbf{A}$ (proposition 1.4), this becomes

$$
\begin{aligned}
\sum_{k=0}^{\infty} N_{k} t^{k} & =\frac{1}{t}\left(\frac{\operatorname{det}((t+1) \mathbf{I}+t \overline{\mathbf{A}})}{\operatorname{det}(\mathbf{I}-t \mathbf{A})}-1\right) \\
& =\frac{1}{t}\left((-1)^{n} \frac{\operatorname{det}\left(-\frac{t+1}{t} \mathbf{I}-\overline{\mathbf{A}}\right)}{\operatorname{det}\left(\frac{1}{t} \mathbf{I}-\mathbf{A}\right)}-1\right),
\end{aligned}
$$

as required.
Now we prove that the main polynomial has integer coefficients. This result is also due to Cvetoković.

Proposition 3.6 (Cvetković ${ }^{[6,5]}$). Let G be a graph. Then $m_{\mathrm{G}} \in \mathbb{Z}[x]$.
Proof. Consider the function

$$
\psi(u)=(-1)^{n} \frac{\phi_{\overline{\mathrm{G}}}(-u-1)}{\phi_{\mathrm{G}}(u)} .
$$

By theorem 3.5 and proposition 3.2,

$$
\begin{aligned}
\psi(u)=1+\frac{1}{u} \sum_{k=0}^{\infty} N_{k}\left(\frac{1}{u}\right)^{k} & =1+\frac{1}{u} \sum_{k=0}^{\infty} n\left(\sum_{i=1}^{p} \vartheta_{i}{ }^{2} \mu_{i}{ }^{k}\right)\left(\frac{1}{u}\right)^{k} \\
& =1+\frac{n}{u} \sum_{i=1}^{p} \vartheta_{i}{ }^{2} \sum_{k=0}^{\infty}\left(\frac{\mu_{i}}{u}\right)^{k} \\
& =1+\frac{n}{u} \sum_{i=1}^{p} \vartheta_{i}{ }^{2} \frac{1}{1-\frac{\mu_{i}}{u}} \quad\left(\text { for }\left|\frac{1}{u}\right|<R\right) \\
& =1+n \sum_{i=1}^{n} \frac{\vartheta_{i}{ }^{2}}{u-\mu_{i}}=\frac{p(u)}{m_{\mathrm{G}}(u)},
\end{aligned}
$$

where $p(u)$ is the polynomial obtained by gathering terms on the lowest common denominator $m_{\mathrm{G}}(u)$. Thus $\psi(u)$ has simple poles only at the main eigenvalues of G , so $\phi_{\overline{\mathrm{G}}}(-u-1)$ and $\phi_{\mathrm{G}}(u)$ have common factors which cancel. But these common factors must have rational coefficients (by the Euclidean division algorithm), and so must $m_{\mathrm{G}}(u)$. Moreover by theorem 2.23, $m_{\mathrm{G}}(u)$ has integer coefficients.

Corollary 3.7. Let G be a graph. A generating function for the number of walks N_{k} in G is

$$
H_{\mathrm{G}}(t)=\sum_{k=0}^{\infty} N_{k} t^{k}=\sum_{i=1}^{p} \frac{n \vartheta_{i}^{2}}{1-\mu_{i} t}
$$

Proof. In the proof of proposition 3.6, simplification of $\psi(u)$ yielded

$$
1+\frac{1}{u} \sum_{k=0}^{\infty} N_{k}\left(\frac{1}{u}\right)^{k}=1+n \sum_{i=1}^{n} \frac{\vartheta_{i}^{2}}{u-\mu_{i}} .
$$

Put $t=\frac{1}{u}$ and the result follows.

3.3 The Main Eigenspace

Let $\left\{\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{m}\right\}$ be a basis for the m-dimensional eigenspace $\mathcal{E}(\mu)$ of some main eigenvalue μ having multiplicity m in ϕ_{G}, such that the first one \boldsymbol{b}_{1} is not orthogonal to \boldsymbol{j}. Now for $2 \leqslant i \leqslant m$, define

$$
\boldsymbol{w}_{i}=\frac{\left\langle\boldsymbol{j}, \boldsymbol{b}_{1}\right\rangle}{n} \boldsymbol{b}_{i}-\frac{\left\langle\boldsymbol{j}, \boldsymbol{b}_{i}\right\rangle}{n} \boldsymbol{b}_{1} .
$$

It is easy to check that $\left\langle\boldsymbol{w}_{i}, \boldsymbol{j}\right\rangle=0$ for $i \geqslant 2$, and that $B_{\mu}^{\prime}=\left\{\boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{m}, \boldsymbol{b}_{1}\right\}$ is still a basis for $\mathcal{E}(\mu)$. Moreover, Gram-Schmidt orthogonalisation on B_{μ}^{\prime} produces an orthonormal basis $B_{\mu}=\left\{\boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{m}, \boldsymbol{x}_{1}\right\}$ for $\mathcal{E}(\mu)$, still having only one vector \boldsymbol{x}_{1} not orthogonal to \boldsymbol{j}. Denote this vector by \boldsymbol{x}_{μ}.

Definition 3.8 (Main Eigenspace). Let G have main eigenvalues μ_{1}, \ldots, μ_{p} and let $\operatorname{mv}(\mathrm{G})=\left\{\boldsymbol{x}_{\mu_{1}}, \ldots, \boldsymbol{x}_{\mu_{p}}\right\}$ denote the uniquely determined set of eigenvectors obtained by the process described above, where each $\boldsymbol{x}_{\mu_{i}} \in \mathcal{E}\left(\mu_{i}\right)$ is not orthogonal to \boldsymbol{j}.

Then the main eigenspace of G, denoted by Main(G), is the linear subspace $\operatorname{span}(\operatorname{mv}(G))$ of \mathbb{R}^{n}.

The eigenvectors in $\operatorname{mv}(\mathrm{G})$ are orthogonal and linearly independent, as they belong to
distinct eigenvalues (proposition 2.17). Hence $\operatorname{dim}(\operatorname{Main}(G))=p$. It follows also that $\operatorname{mv}(G)$ can be extended to a basis for \mathbb{R}^{n}.

Proposition 3.9 (Main Polynomial). Let G be a graph with adjacency matrix A. Then

$$
m_{\mathbf{A}}(x)=\phi_{\mathbf{A}\lceil\operatorname{Main}(\mathrm{G})}(x) .
$$

Proof. Suppose $(\mathbf{A} \upharpoonright \operatorname{Main}(\mathrm{G})) \boldsymbol{x}=\mu \boldsymbol{x}$. Then $\mathbf{A x}=\mu \boldsymbol{x}$, and $\boldsymbol{x} \in \operatorname{Main}(\mathrm{G})$, i.e., there are α_{i} such that

$$
\boldsymbol{x}=\alpha_{1} \boldsymbol{x}_{\mu_{1}}+\cdots+\alpha_{p} \boldsymbol{x}_{\mu_{p}}
$$

But $\boldsymbol{x}_{\mu_{i}}$ are all eigenvectors corresponding to distinct eigenvalues (namely μ_{i}), so their sum cannot be an eigenvector. In other words, all but one of the α_{i} 's are zero. So \boldsymbol{x} must be a scalar multiple of one of the $\boldsymbol{x}_{\mu_{i}}$'s.

This result immediately gives an analogue to the Cayley-Hamilton theorem.
Corollary 3.10. Let G be a graph. Then $m_{G}(\mathbf{A}) \upharpoonright \operatorname{Main}(\mathrm{G})=\mathbf{O}$.
Proposition 3.11. Let G be a graph, and let $\operatorname{mv}(\mathrm{G})=\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{p}\right\}$. Then

$$
\boldsymbol{j}=\sqrt{n} \sum_{i=1}^{p} \gamma_{i} \boldsymbol{x}_{i}
$$

where $\left|\gamma_{i}\right|=\vartheta_{i}$, i.e., the main angles of G .

Proof. Recall, by the process of obtaining $\operatorname{mv}(\mathrm{G})$, that the orthonormal basis $B_{\mu_{i}}$ for $\mathcal{E}\left(\mu_{i}\right)$ contains only one vector \boldsymbol{x}_{i} with non-zero component along \boldsymbol{j}, i.e., $\langle\boldsymbol{j}, \boldsymbol{b}\rangle=0$ for all $\boldsymbol{x}_{i} \neq \boldsymbol{b} \in B_{\mu_{i}}$. Thus, since $\mathbb{R}^{n}=\bigoplus_{i=1}^{s} \mathcal{E}\left(\mu_{i}\right)$,

$$
\begin{equation*}
\boldsymbol{j}=\sum_{\boldsymbol{b} \in \bigcup_{i=1}^{s} B_{\mu_{i}}}\langle\boldsymbol{j}, \boldsymbol{b}\rangle \boldsymbol{b}=\sum_{i=1}^{p}\left\langle\boldsymbol{j}, \boldsymbol{x}_{i}\right\rangle \boldsymbol{x}_{i} . \tag{3.2}
\end{equation*}
$$

Moreover, if we project \boldsymbol{j} onto $\mathcal{E}\left(\mu_{i}\right)$ for some μ_{i}, the resulting projected vector $\mathbf{P}_{i} \boldsymbol{j}=$ $\sum_{\boldsymbol{b} \in B_{\mu_{i}}}\langle\boldsymbol{j}, \boldsymbol{b}\rangle \boldsymbol{b}=\left\langle\boldsymbol{j}, \boldsymbol{x}_{i}\right\rangle \boldsymbol{x}_{i}$, and since \boldsymbol{x}_{i} is unit, $\left\|\boldsymbol{P}_{i} \boldsymbol{j}\right\|=\left|\left\langle\boldsymbol{j}, \boldsymbol{x}_{i}\right\rangle\right|$. Thus by (3.2), the result follows.

Together with corollary 3.10 , this result gives us that $m_{G}(\mathbf{A}) \boldsymbol{j}=\mathbf{0}$.

3.4 The Walk Matrix

In corollary 2.19 , the number of walks of length k from vertex i is show to be the i th entry of the vector $\mathbf{A}^{k} \boldsymbol{j}$. This motivates the following definition.

Definition 3.12. Let G be a graph with main eigenvalues μ_{1}, \ldots, μ_{p}. The k-walk matrix is the $n \times k$ matrix

$$
\mathbf{W}_{\mathrm{G}}(k)=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
\boldsymbol{j} & \mathbf{A} \boldsymbol{j} & \cdots & \mathbf{A}^{k-1} \boldsymbol{j} \\
\mid & \mid & & \mid
\end{array}\right)
$$

In particular, the walk matrix \mathbf{W}_{G} of \mathbf{G} is the p-walk matrix, i.e., $\mathbf{W}_{\mathrm{G}}=\mathbf{W}_{\mathrm{G}}(p)$, where p is the number of main eigenvalues of G .

Theorem 3.13. The columns $\left\{\boldsymbol{j}, \mathbf{A} \boldsymbol{j}, \ldots, \mathbf{A}^{p-1} \boldsymbol{j}\right\}$ of \mathbf{W}_{G} are a basis for Main(G).

Proof. Let $\operatorname{mv}(\mathrm{G})=\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{p}\right\}$. Since $\boldsymbol{j}=\sum_{j=1}^{p} \beta_{j} \boldsymbol{x}_{j}$ by proposition 3.11 (where $\beta_{j}=$ $\pm \sqrt{n} \vartheta_{j}$), we can write $\mathbf{A}^{i} \boldsymbol{j}=\sum_{j=1}^{p} \beta_{j} \mathbf{A}^{i} \boldsymbol{x}_{j}=\sum_{j=1}^{p} \beta_{j} \mu_{j}{ }^{i} \boldsymbol{x}_{j}$, so $\operatorname{span}\left\{\boldsymbol{j}, \mathbf{A} \boldsymbol{j}, \ldots, \mathbf{A}^{p-1} \boldsymbol{j}\right\} \subseteq$ $\operatorname{Main}(G)$.

Now we prove linear independence. Suppose there are α_{i} such that

$$
\sum_{i=0}^{p-1} \alpha_{i} \mathbf{A}^{i} \boldsymbol{j}=\mathbf{0} \Longrightarrow \sum_{i=0}^{p-1} \alpha_{i} \sum_{j=1}^{p} \beta_{j} \mu_{j}^{i} \boldsymbol{x}_{j}=\mathbf{0} \Longrightarrow \sum_{j=1}^{p}\left(\beta_{j} \sum_{i=0}^{p-1} \alpha_{i} \mu_{j}^{i}\right) \boldsymbol{x}_{j}=\mathbf{0}
$$

By the linear independence of $\operatorname{mv}(\mathrm{G})$, it follows that $\beta_{j} \sum_{i=0}^{p-1} \alpha_{i} \mu_{j}{ }^{i}=0$ for all $1 \leqslant j \leqslant p$. Now since $\left|\beta_{i}\right|=\sqrt{n} \vartheta_{i} \neq 0$ (otherwise μ_{i} would not be main), we have the equations

$$
\left(\begin{array}{ccccc}
1 & \mu_{1} & \mu_{1}^{2} & \cdots & \mu_{1}^{p-1} \\
1 & \mu_{2} & \mu_{2}^{2} & \cdots & \mu_{2}^{p-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \mu_{p} & \mu_{p}^{2} & \cdots & \mu_{p}^{p-1}
\end{array}\right)\left(\begin{array}{c}
\alpha_{0} \\
\alpha_{1} \\
\vdots \\
\alpha_{p-1}
\end{array}\right)=\mathbf{0} .
$$

The left hand-side is the well-known Vandermonde matrix, whose determinant is nonzero for distinct μ_{i}. Thus the only solution to this system is $\alpha_{0}=\cdots=\alpha_{p-1}=0$, as required.

Thus $\left\{\boldsymbol{j}, \mathbf{A} \boldsymbol{j}, \ldots, \mathbf{A}^{p-1} \boldsymbol{j}\right\}$ is a set of $p=\operatorname{dim}(\operatorname{Main}(\mathrm{G}))$ linearly independent vectors in $\operatorname{Main}(\mathrm{G})$, so they form a basis.

An immediate consequence is the following fact about walk matrices.

Corollary 3.14. Let G be a graph, and let $\mathbf{W}_{\mathrm{G}}(k)$ be its k-walk matrix. Then

$$
\operatorname{rank}\left(\mathbf{W}_{\mathrm{G}}(k)\right)=\min \{k, p\}
$$

Moreover, if we have the walk matrix $\mathbf{W}_{\mathbf{G}}$ of a graph \mathbf{G}, we can obtain $\mathbf{W}_{\mathbf{G}}(k)$ for $k \geqslant p$ using $m_{\mathbf{A}}(\mathrm{G})$.

Proposition 3.15. Let G be a graph, and suppose its main polynomial is $m_{\mathrm{G}}(x)=$ $x^{p}-c_{0} x^{p-1}-\cdots-c_{p-2} x-c_{p-1}$. Then

$$
\mathbf{A}^{p} \mathbf{j}=c_{0} \mathbf{j}+c_{1} \mathbf{A} \mathbf{j}+\cdots+c_{p-1} \mathbf{A}^{p-1} \mathbf{j}
$$

Multiplying by \mathbf{A}^{i-p} for $i \geqslant p$, one obtains a recurrence relation for the ith column of $\mathbf{W}_{\mathbf{G}}(k)$ in terms of the previous p columns.

Proof. By the analogue of the Cayley-Hamilton theorem (corollary 3.10), we have $m_{\mathrm{G}}(\mathbf{A}) \boldsymbol{j}=$ $\mathbf{0}$, which gives the result.

Corollary 3.16. Any two comain graphs with the same walk matrix have the same k-walk matrix for any $k \geqslant p$.

Proof. Any two comain graphs have the same main polynomial, so proposition 3.15 gives the result.

Counterexample 3.17. Unfortunately this is untrue for graphs which are not comain. The two pairs $\left(\mathrm{G}_{5622}, \mathrm{G}_{12058}\right)$ and $\left(\mathrm{G}_{5626}, \mathrm{G}_{12093}\right)$ are counterexamples obtained using Mathematica. They are the only counterexamples on $\leqslant 8$ vertices having the same walk matrix, but not the same k-walk matrix for $k \geqslant p$.

Refer to figure 3.1. The numbering of the graphs is in accordance with the list of nonisomorphic graphs on 8 vertices on Brendan McKay's graph data website. ${ }^{[13]}$

Walk Matrix 3 -walk Matrix

$$
\left(\begin{array}{ll}
1 & 4 \\
1 & 4 \\
1 & 4 \\
1 & 4 \\
1 & 5 \\
1 & 5 \\
1 & 5 \\
1 & 5
\end{array}\right) \quad\left(\begin{array}{lll}
1 & 4 & 20 \\
1 & 4 & 20 \\
1 & 4 & 20 \\
1 & 4 & 20 \\
1 & 5 & 21 \\
1 & 5 & 21 \\
1 & 5 & 21 \\
1 & 5 & 21
\end{array}\right)
$$

G_{5626}
Main Eigenvalues: $1+\sqrt{17}, 1-\sqrt{17}$

G_{12058}
Main Eigenvalues: $\frac{3-\sqrt{37}}{2}, \frac{3+\sqrt{37}}{2}$
Walk Matrix 3 -walk Matrix

$$
\left(\begin{array}{ll}
1 & 4 \\
1 & 4 \\
1 & 4 \\
1 & 4 \\
1 & 5 \\
1 & 5 \\
1 & 5 \\
1 & 5
\end{array}\right) \quad\left(\begin{array}{lll}
1 & 4 & 19 \\
1 & 4 & 19 \\
1 & 4 & 19 \\
1 & 4 & 19 \\
1 & 5 & 22 \\
1 & 5 & 22 \\
1 & 5 & 22 \\
1 & 5 & 22
\end{array}\right)
$$

$\mathrm{G}_{12} 093$
Main Eigenvalues: $2+\sqrt{10}, 2-\sqrt{10}$
Walk Matrix 3 -walk Matrix

$$
\left(\begin{array}{ll}
1 & 4 \\
1 & 4 \\
1 & 4 \\
1 & 4 \\
1 & 6 \\
1 & 6 \\
1 & 6 \\
1 & 6
\end{array}\right) \quad\left(\begin{array}{lll}
1 & 4 & 22 \\
1 & 4 & 22 \\
1 & 4 & 22 \\
1 & 4 & 22 \\
1 & 6 & 30 \\
1 & 6 & 30 \\
1 & 6 & 30 \\
1 & 6 & 30
\end{array}\right)
$$

Figure 3.1: The only two counterexamples on $\leqslant 8$ vertices, as described in counterexample 3.17.

CHAPTER 4

Canonical Double Covers

"You keep using that word, I do not think it means what you think it means."
Inigo Montoya
(The Princess Bride)

Most of the results presented here, as well as their proofs, are from [4].
The canonical double covering (or bipartite cover) of a graph $G=(V, E)$ of order n, denoted by $\operatorname{CDC}(\mathrm{G})$, is a graph $\mathrm{G}^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ of order $2 n$ where $V^{\prime}=V \times\{0,1\}$, and $E^{\prime}=\{\{(u, 0),(v, 1)\},\{(u, 1),(v, 0)\}:\{u, v\} \in E\}$. In other words, $\mathrm{CDC}(\mathrm{G})$ is obtained by producing two copies of the vertex set, and replacing edges $\{u, v\}$ in the original graph by edges from the first copy to the second copy, and vice-versa (see figure 4.1 for examples). Clearly, $\mathrm{CDC}(\mathrm{G})$ is always bipartite, with partite sets $V \times\{0\}$ and $V \times\{1\}$. If the vertices in $V \times\{0\}$ are given the first n labels, then it is not hard to see that the adjacency matrix of $\operatorname{CDC}(\mathrm{G})$ is given by

$$
\mathbf{A}(\mathrm{CDC}(\mathrm{G}))=\left(\begin{array}{c|c}
\mathbf{O} & \mathbf{A}(\mathrm{G}) \\
\hline \mathbf{A}(\mathrm{G}) & \mathbf{O}
\end{array}\right)
$$

This is actually equivalent to the so-called direct product of G with K_{2}, i.e., $\mathrm{CDC}(\mathrm{G})=$ $\mathrm{G} \times \mathrm{K}_{2}$. The direct product was introduced by Whitehead and Russell in Principia Mathematica, as an operation on binary relations. ${ }^{[15]}$

Figure 4.1: Canonical double coverings of C_{3} and $\mathrm{K}_{2,3}$, where vertices $(v, 0)$ are represented by circle nodes, and vertices $(v, 1)$ by square nodes.

4.1 Two Structural Results

The following first result utilises CDC's to distinguish between bipartite and non-bipartite connected graphs.

Proposition 4.1. Let G be a connected graph. Then G is bipartite if and only if $\mathrm{CDC}(\mathrm{G})$ is disconnected. Moreover, if G is bipartite, then $\mathrm{CDC}(\mathrm{G}) \simeq 2 \mathrm{G}$.

Proof. Let G be bipartite, and let U_{1}, U_{2} be the partite sets of G . Consider $\mathrm{CDC}(\mathrm{G})$, and let $V_{i}=\left\{(v, 0): v \in U_{i}\right\}$ and $V_{i}^{\prime}=\left\{(v, 1): v \in U_{i}\right\}$ for $i=1,2$ be the corresponding partite sets and their copies in $\operatorname{CDC}(\mathrm{G})$. Since edges in G are only from U_{1} to U_{2}, then edges in $\mathrm{CDC}(\mathrm{G})$ are only either from V_{1} to V_{2}^{\prime} or V_{2} to V_{1}^{\prime}. Therefore $\mathrm{CDC}(\mathrm{G})$ is disconnected with components being precisely the induced subgraphs on $V_{1} \cup V_{2}^{\prime}$ and $V_{2} \cup V_{1}^{\prime}$, both of which are isomorphic to G.

For the converse, suppose $\mathrm{CDC}(\mathrm{G})$ is connected. Identify $v_{1} \equiv\left(v_{1}, 0\right)$ and $v_{1}^{\prime} \equiv\left(v_{1}, 1\right)$ as notations for the two copies in $\mathrm{CDC}(\mathrm{G})$ of a vertex v_{1} in G . Since $\mathrm{CDC}(\mathrm{G})$ is connected, there is a path $\left(v_{1}, v_{2}^{\prime}, v_{3}, \ldots, v_{k-1}^{\prime}, v_{k}, v_{1}^{\prime}\right)$ joining v_{1} to v_{1}^{\prime}, where the vertices alternate from one copy of the vertex set to another. But this corresponds to the odd cycle $\left(v_{1}, v_{2}, v_{3}, \ldots, v_{k}, v_{1}\right)$ in G . Hence by proposition $1.3, \mathrm{G}$ is not bipartite.

Next we prove that the CDC operation is additive.
Proposition 4.2. Let G and H be graphs. Then

$$
\mathrm{CDC}(\mathrm{G}+\mathrm{H}) \simeq \mathrm{CDC}(\mathrm{G})+\mathrm{CDC}(\mathrm{H}) .
$$

Proof. We have

$$
\mathbf{A}(\mathrm{G}+\mathrm{H})=\left(\begin{array}{c|c}
\mathbf{A}(\mathrm{G}) & \mathbf{O} \\
\hline \mathbf{O} & \mathbf{A}(\mathrm{H})
\end{array}\right)
$$

and so

$$
\begin{equation*}
\mathbf{A}(\operatorname{CDC}(\mathrm{G}+\mathrm{H}))=\left(\right) . \tag{4.1}
\end{equation*}
$$

On the other hand,

$$
\mathbf{A}(\mathrm{CDC}(\mathrm{G}))=\left(\begin{array}{c|c}
\mathbf{O} & \mathbf{A}(\mathrm{G}) \\
\hline \mathbf{A}(\mathrm{G}) & \mathbf{O}
\end{array}\right)
$$

and similarly for H , so that

$$
\begin{equation*}
\mathbf{A}(\mathrm{CDC}(\mathrm{G})+\mathrm{CDC}(\mathrm{H}))=\left(\right) . \tag{4.2}
\end{equation*}
$$

When considering equations (4.1) and (4.2), it is not hard to see that the permutation matrix

$$
\mathbf{P}=\left(\begin{array}{c|c|c|c}
\mathbf{I}_{\mathrm{G}} & \mathbf{O} & \mathbf{O} & \mathbf{O} \\
\hline \mathbf{O} & \mathbf{O} & \mathbf{I}_{\mathrm{H}} & \mathbf{O} \\
\hline \mathbf{O} & \mathbf{I}_{\mathrm{G}} & \mathbf{O} & \mathbf{O} \\
\hline \mathbf{O} & \mathbf{O} & \mathbf{O} & \mathbf{I}_{\mathrm{H}}
\end{array}\right),
$$

where \mathbf{I}_{G} and \mathbf{I}_{H} denotes the $|V(\mathrm{G})| \times|V(\mathrm{G})|$ and $|V(\mathrm{H})| \times|V(\mathrm{H})|$ identity matrices respectively, gives the required relabelling:

$$
\mathbf{P}^{\top} \mathbf{A}(\mathrm{CDC}(\mathrm{G}+\mathrm{H})) \mathbf{P}=\mathbf{A}(\mathrm{CDC}(\mathrm{G})+\mathrm{CDC}(\mathrm{H}))
$$

so that $\mathrm{CDC}(\mathrm{G}+\mathrm{H}) \simeq \mathrm{CDC}(\mathrm{G})+\mathrm{CDC}(\mathrm{H})$, as required.

Using induction, proposition 4.2 gives us that more generally

$$
\mathrm{CDC}\left(\mathrm{G}_{1}+\cdots+\mathrm{G}_{k}\right) \simeq \mathrm{CDC}\left(\mathrm{G}_{1}\right)+\cdots+\mathrm{CDC}\left(\mathrm{G}_{k}\right)
$$

and in particular when the graphs are all isomorphic, that $\mathrm{CDC}(n \mathrm{G}) \simeq n \mathrm{CDC}(\mathrm{G})$.

4.2 Graphs with the same CDC

If two graphs G, H have isomorphic canonical double coverings, that is, $\mathrm{CDC}(\mathrm{G}) \simeq$ $\mathrm{CDC}(\mathrm{H})$, this does not determine H . Moreover, it does not even determine connectivity, i.e., if G is connected, we do not necessarily have that H is connected. Indeed, since C_{6} is bipartite, we have $\operatorname{CDC}\left(\mathrm{C}_{6}\right) \simeq 2 \mathrm{C}_{6}$ by proposition 4.1. But then by proposition 4.2
and figure 4.1, we have $\operatorname{CDC}\left(2 \mathrm{~K}_{3}\right) \simeq 2 \mathrm{CDC}\left(\mathrm{K}_{3}\right) \simeq 2 \mathrm{C}_{6}$. Thus we have two graphs with the same CDC, where one is connected, and the other is disconnected.

However, we do have the following.
Lemma 4.3. Let G and H be two graphs with $\mathrm{CDC}(\mathrm{G}) \simeq \operatorname{CDC}(\mathrm{H})$. Then G has no isolated vertices if and only if H has no isolated vertices.

Proof. Indeed, if G has an isolated vertex, then $\mathrm{G} \simeq \mathrm{G}^{\prime}+\mathrm{K}_{1}$, so

$$
\mathrm{CDC}(\mathrm{G}) \simeq \mathrm{CDC}\left(\mathrm{G}^{\prime}+\mathrm{K}_{1}\right) \simeq \mathrm{CDC}\left(\mathrm{G}^{\prime}\right)+\mathrm{CDC}\left(\mathrm{~K}_{1}\right) \simeq \mathrm{CDC}\left(\mathrm{G}^{\prime}\right)+\overline{\mathrm{K}}_{2}
$$

by proposition 4.2 , and therefore $\mathrm{CDC}(\mathrm{H}) \simeq \operatorname{CDC}\left(\mathrm{G}^{\prime}\right)+\overline{\mathrm{K}}_{2}$. Thus the matrix

$$
\mathbf{A}(\mathrm{CDC}(\mathrm{H}))=\left(\begin{array}{c|c}
\mathbf{O} & \mathbf{A}(\mathrm{H}) \\
\hline \mathbf{A}(\mathrm{H}) & \mathbf{O}
\end{array}\right)
$$

has two whole columns of zeros, corresponding to the isolated vertices which make up $\overline{\mathrm{K}}_{2}$. But a column of zeros in the matrix above arises only when a whole column of zeros is present in one of the non-zero blocks $\mathbf{A}(\mathrm{H})$, and since both non-zero blocks are equal, then these two columns must be distributed equally among both $\mathbf{A}(\mathrm{H})$'s (otherwise they would be different). In other words, $\mathbf{A}(\mathrm{H})$ must have a column of zeros, and consequently H has an isolated vertex. This argument is symmetric by interchanging G and H, so we also have the converse.

This proposition is the key which allows us to prove the following theorem, which is one of the main results of this chapter.

Theorem 4.4. Suppose G and H are two graphs with adjacency matrices \mathbf{A}_{G} and $\mathbf{A}_{\boldsymbol{H}}$. Then $\mathrm{CDC}(\mathrm{G}) \simeq \mathrm{CDC}(\mathrm{H})$ if and only if there exist two permutation matrices \mathbf{Q} and \mathbf{R} such that

$$
\mathbf{Q} \mathbf{A}_{G} \mathbf{R}=\mathbf{A}_{\boldsymbol{H}}
$$

Proof. Suppose, without loss of generality, that the graphs G and H have no isolated vertices (if they do, then by lemma 4.3, we could simply pair them off until we are left with two graphs having no isolated vertices). If $\mathrm{CDC}(\mathrm{G}) \simeq \mathrm{CDC}(\mathrm{H})$, then there exists a
permutation matrix \mathbf{P} such that

$$
\begin{gathered}
\mathbf{P}^{\top}\left(\begin{array}{c|c}
\mathbf{O} & \mathbf{A}_{\mathrm{G}} \\
\hline \mathbf{A}_{\mathrm{G}} & \mathbf{O}
\end{array}\right) \mathbf{P}=\left(\begin{array}{c|c}
\mathbf{O} & \mathbf{A}_{\mathrm{H}} \\
\hline \mathbf{A}_{\mathrm{H}} & \mathbf{O}
\end{array}\right) \\
\Longrightarrow\left(\begin{array}{l|l|l}
\mathbf{P}_{11}^{\top} & \mathbf{P}_{21}^{\top} \\
\hline \mathbf{P}_{12}^{\top} & \mathbf{P}_{22}^{\top}
\end{array}\right)\left(\begin{array}{c|c|c}
\mathbf{O} & \mathbf{A}_{\mathrm{G}} \\
\hline \mathbf{A}_{\mathrm{G}} & \mathbf{O}
\end{array}\right)\left(\begin{array}{c|c}
\mathbf{P}_{11} & \mathbf{P}_{12} \\
\hline \mathbf{P}_{21} & \mathbf{P}_{22}
\end{array}\right)=\left(\begin{array}{c|c}
\mathbf{O} & \mathbf{A}_{\mathrm{H}} \\
\hline \mathbf{A}_{\mathrm{H}} & \mathbf{O}
\end{array}\right) .
\end{gathered}
$$

Multiplying out and comparing entries, we get that

$$
\begin{align*}
& \mathbf{P}_{21}^{\top} \mathbf{A}_{\mathrm{G}} \mathbf{P}_{12}+\mathbf{P}_{11}^{\top} \mathbf{A}_{\mathrm{G}} \mathbf{P}_{22}=\mathbf{A}_{\mathbf{H}} \tag{4.3}\\
& \mathbf{P}_{21}^{\top} \mathbf{A}_{\mathrm{G}} \mathbf{P}_{11}=\mathbf{P}_{12}^{\top} \mathbf{A}_{\mathrm{G}} \mathbf{P}_{22}=\mathbf{O} \tag{4.4}
\end{align*}
$$

where equation (4.4) follows since all matrices have non-negative entries.
Now observe that

$$
\left(\mathbf{P}_{11}+\mathbf{P}_{21}\right)^{\top} \mathbf{A}_{\mathbf{G}}\left(\mathbf{P}_{22}+\mathbf{P}_{12}\right)=\mathbf{A}_{\boldsymbol{H}}
$$

by equations (4.3) and (4.4). We claim that $\mathbf{Q}:=\left(\mathbf{P}_{11}+\mathbf{P}_{21}\right)^{\top}$ and $\mathbf{R}:=\mathbf{P}_{22}+\mathbf{P}_{12}$ are permutation matrices. Suppose not. Being the sum of two submatrices of \mathbf{P}, this can only happen if a row (and column) are zero. But then \mathbf{A}_{H} will have a row of zeros, corresponding to an isolated vertex in H , a contradiction.

Conversely, if $\mathbf{Q} \mathbf{A}_{\mathbf{G}} \mathbf{R}=\mathbf{A}_{\mathbf{H}}$, then clearly

$$
\mathbf{P}:=\left(\begin{array}{c|c}
\mathbf{O} & \mathbf{Q} \\
\hline \mathbf{R}^{\top} & \mathbf{O}
\end{array}\right)
$$

defines a permutation matrix, and it is easy to verify that

$$
\mathbf{P}^{\top}\left(\begin{array}{c|c}
\mathbf{O} & \mathbf{A}_{G} \\
\hline \mathbf{A}_{G} & \mathbf{O}
\end{array}\right) \mathbf{P}=\left(\begin{array}{c|c}
\mathbf{O} & \mathbf{A}_{\mathrm{H}} \\
\hline \mathbf{A}_{\mathrm{H}} & \mathbf{O}
\end{array}\right)
$$

as required.

This weakened notion of graph isomorphism, where $\mathbf{Q} \mathbf{A}_{G} \mathbf{R}=\mathbf{A}_{\boldsymbol{H}}$ and the permutation matrices \mathbf{Q} and \mathbf{R} are not necessarily inverses, was first studied by Lauri et al. in [11]. They give a different proof of theorem 4.4 which uses a combinatorial argument. Such
graphs are said to be two-fold isomorphic or TF-isomorphic, and we write

$$
G \stackrel{\mathrm{TF}}{\approx} H .
$$

The pair of permutations (\mathbf{Q}, \mathbf{R}) is called the TF-isomorphism.
In [11], the authors discuss a pair of TF-isomorphic graphs on 7 vertices found by B. Zelinka. In the appendix, we present an exhaustive list of 32 non-isomorphic graph pairs which have the same CDC on up to 8 vertices. The Zelinka example corresponds to the pair ($\mathrm{G}_{1164}, \mathrm{H}_{1032}$).

4.3 Establishing a Hierarchy

In this final section, we compare the strength of relationships and similarities between graphs using the results of this chapter and the previous one to establish a hierarchy in view of their main eigenvalues, main eigenspaces, main eigenvalues, walk matrices, and CDCs.

That being TF-isomorphic and having isomorphic CDC's are equivalent is established by theorem 4.4. Next, we show that having isomorphic CDC's implies having the same k-walk matrix for any k, and in particular, the same walk matrix.

Theorem 4.5. Let G, H be two graphs with $\mathrm{CDC}(\mathrm{G}) \simeq \mathrm{CDC}(\mathrm{H})$, and let k be a natural number. Then

$$
\mathbf{W}_{\mathbf{G}}(k)=\mathbf{W}_{\mathbf{H}}(k)
$$

for appropriate labelling of the vertices.
Proof. For a graph Γ, let $\mathbf{A}_{\Gamma}=\mathbf{A}(\Gamma)$ and $\mathbf{C}_{\Gamma}=\mathbf{A}(\mathrm{CDC}(\Gamma))$. Since $\mathrm{CDC}(\mathrm{G}) \simeq \operatorname{CDC}(\mathbf{H})$, we can relabel the vertices of the graph \mathbf{H} to get \mathbf{H}^{\prime}, so that $\mathbf{C}_{\mathbf{G}}=\mathbf{C}_{\mathbf{H}^{\prime}}$. Now for any $0 \leqslant \ell \leqslant k$, we have that

$$
\mathbf{C}_{\mathrm{G}}^{\ell} \mathbf{j}=\left(\frac{\mathbf{A}_{\mathrm{G}}{ }^{\ell} \mathbf{j}}{\mathbf{A}_{\mathrm{G}}{ }^{\ell} \mathbf{j}}\right) \quad \text { and } \quad \mathbf{C}_{\mathrm{H}^{\prime}}^{\ell} \mathbf{j}=\left(\frac{\mathbf{A}_{\mathbf{H}^{\prime}} \mathbf{j}}{\mathbf{A}_{\mathrm{H}^{\prime}}{ }^{\ell} \mathbf{j}}\right)
$$

but since $\mathbf{C}_{\mathbf{G}}=\mathbf{C}_{\mathbf{H}^{\prime}}$, it follows that $\mathbf{A}_{\mathbf{G}}{ }^{\ell} \mathbf{j}=\mathbf{A}_{\mathbf{H}^{\prime}} \boldsymbol{\jmath}$ for all $0 \leqslant \ell \leqslant k$, so the columns of $\mathbf{W}_{\mathbf{G}}(k)$ and $\mathbf{W}_{\mathbf{H}}(k)$ are equal.

Now we show that the converse is false.

Figure 4.2: The hierarchy we present through our results. The arrow \Rightarrow means "implies", and \nRightarrow means "does not imply". The combination \Leftrightarrow is short for \Rightarrow and \Leftarrow, i.e., "implies and is implied by", and similarly \nLeftarrow is short for \nRightarrow and \nLeftarrow, i.e., "does not imply and is not implied by". The dashed lines which merge at the \wedge node denote the conjunction of those two results. The dotted lines denote a conjecture.

Graph G

Graph H

Figure 4.3: Graphs G and H give a counterexample to the converse of theorem 4.5, since they have the same walk matrix but different CDC's.

Graph G

Graph H

Figure 4.4: Graphs G and H have the same main eigenvalues, but have different walk matrices.

Counterexample 4.6. A counterexample of the converse of theorem 4.5 is given in figure 4.3. Indeed, those graphs have

$$
\mathbf{W}_{\mathrm{G}}=\left(\begin{array}{ccc}
1 & 3 & 9 \\
1 & 3 & 10 \\
1 & 3 & 10 \\
1 & 3 & 10 \\
1 & 3 & 10 \\
1 & 3 & 9 \\
1 & 4 & 12
\end{array}\right)=\mathbf{W}_{\mathrm{H}}
$$

but $\mathrm{CDC}(\mathrm{G}) \nleftarrow \mathrm{CDC}(\mathrm{H})$.
Moreover, these two graphs have distinct main eigenvalues, which shows that same walk matrix \nRightarrow same main eigenvalues.

Counterexample 4.7. The graphs G and H of figure 4.4 prove that the converse is also false, i.e., that having the same main eigenvalues does not imply that the graphs have the same walk matrix.

Indeed, they both have main polynomial $x\left(x^{3}-2 x^{2}-4 x+7\right)$, but their walk matrices are

$$
\mathbf{W}_{\mathrm{G}}=\left(\begin{array}{cccc}
1 & 2 & 6 & 12 \\
1 & 2 & 4 & 10 \\
1 & 2 & 4 & 10 \\
1 & 2 & 6 & 12 \\
1 & 4 & 8 & 24 \\
1 & 2 & 6 & 14 \\
1 & 2 & 6 & 14
\end{array}\right), \quad \mathbf{W}_{\mathbf{H}}=\left(\begin{array}{cccc}
1 & 2 & 6 & 12 \\
1 & 3 & 7 & 19 \\
1 & 2 & 6 & 14 \\
1 & 3 & 7 & 19 \\
1 & 2 & 6 & 12 \\
1 & 3 & 5 & 15 \\
1 & 1 & 3 & 5
\end{array}\right)
$$

It is also easy to check that their CDC's are not isomorphic.
Counterexample 4.8. Here we show that graphs having the same walk matrix do not necessarily have the same main eigenvectors. Indeed, the two pairs of graphs in counterexample 3.17 have the same walk matrix but different eigenvectors.

The span of their eigenvectors however, results in the same space.
In fact:
Proposition 4.9. Let G and H be two graphs with the same walk matrix. Then $\operatorname{Main}(G)=\operatorname{Main}(H)$.

Proof. This follows immediately by theorem 3.13.

Thus the leap from eigenvectors to eigenspace makes a difference. In fact, it turns out that if two graphs have the same main eigenvectors but different main eigenvalues, they can never have the same walk matrix:

Proposition 4.10. Let G and H be two graphs with the same main eigenvectors but different main eigenvalues. Then $\mathbf{W}_{\mathbf{G}}(k) \neq \mathbf{W}_{\mathbf{H}}(k)$ for all $k \geqslant 2$.

Proof. Let G and H both have the same main eigenvectors $\operatorname{mv}(\mathrm{G})=\operatorname{mv}(\mathrm{H})=\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{p}\right\}$, but different eigenvalues, $\mu_{1}^{\mathrm{G}}, \ldots, \mu_{p}^{\mathrm{G}}, \mu_{1}^{\mathrm{H}}, \ldots, \mu_{p}^{\mathrm{H}}$. By proposition 3.11 , the first non- \boldsymbol{j} column of $\mathbf{W}_{\mathbf{G}}(k)$ is

$$
\mathbf{A}_{\mathrm{G}} \boldsymbol{j}=\sqrt{n} \sum_{i=1}^{p} \gamma_{i} \mathbf{A}_{\mathrm{G}} \boldsymbol{x}_{i}=\sqrt{n} \sum_{i=1}^{p} \gamma_{i} \mu_{i}^{\mathrm{G}} \boldsymbol{x}_{i} \neq \sqrt{n} \sum_{i=1}^{p} \gamma_{i} \mu_{i}^{\mathrm{H}} \boldsymbol{x}_{i}=\mathbf{A}_{\mathrm{H}} \boldsymbol{j}
$$

since the \boldsymbol{x}_{i} are linearly independent, as required.

Example 4.11. Proposition 4.10 establishes a non-implication. However, even though it is proven in general, we must ensure that it is not vacuously true.

Graph G

Graph H

Figure 4.5: Graphs G and H have the same main eigenvectors, but have different walk matrices.

The graphs G and H in figure 4.5 both have main eigenvectors

$$
\left(\frac{1}{2}(-1 \pm \sqrt{5}), \frac{1}{2}(-1 \pm \sqrt{5}), \frac{1}{2}(-1 \pm \sqrt{5}), \frac{1}{2}(-1 \pm \sqrt{5}), 1,1,1,1\right)
$$

but their walk matrices are

$$
\mathbf{W}_{\mathrm{G}}=\left(\begin{array}{cc}
1 & 2 \\
1 & 2 \\
1 & 2 \\
1 & 2 \\
1 & 4 \\
1 & 4 \\
1 & 4 \\
1 & 4
\end{array}\right) \quad \text { and } \quad \mathbf{W}_{\mathrm{H}}=\left(\begin{array}{cc}
1 & 3 \\
1 & 3 \\
1 & 3 \\
1 & 3 \\
1 & 6 \\
1 & 6 \\
1 & 6 \\
1 & 6
\end{array}\right)
$$

Indeed, their main eigenvalues are different. G has main eigenvalues $1 \pm \sqrt{5}$, whereas H has main eigenvalues $\frac{3}{2}(1 \pm \sqrt{5})$.

On the other hand, the same main eigenvalues and eigenvectors yield a unique k-walk matrix for any k :

Theorem 4.12. Let $k \in \mathbb{N}$, and suppose G and H are two comain graphs with the same main eigenvectors. Then

$$
\mathbf{W}_{\mathbf{G}}(k)=\mathbf{W}_{\mathbf{H}}(k) .
$$

Proof. Suppose G and H have main eigenvalues μ_{1}, \ldots, μ_{p}, and corresponding main eigenvectors $\boldsymbol{x}_{1} \ldots, \boldsymbol{x}_{p}$. By proposition 3.11 we may express \boldsymbol{j} as $\boldsymbol{j}=\sum_{i=1}^{p} \beta_{i} \boldsymbol{x}_{i}$. Now the
ℓ th column of $\mathbf{W}_{\mathbf{G}}(k)$ is the vector $\mathbf{A}_{\mathbf{G}}^{\ell-1} \mathbf{j}$, so

$$
\begin{aligned}
\mathbf{A}_{\mathrm{G}}^{\ell-1} \boldsymbol{j}=\mathbf{A}_{\mathrm{G}}^{\ell-1} \sum_{i=1}^{p} \beta_{i} \boldsymbol{x}_{i} & =\sum_{i=1}^{p} \beta_{i} \mathbf{A}_{\mathrm{G}}^{\ell-1} \boldsymbol{x}_{i} \\
& =\sum_{i=1}^{p} \beta_{i} \mu_{i}^{\ell-1} \boldsymbol{x}_{i}=\sum_{i=1}^{p} \beta_{i} \mathbf{A}_{\mathrm{H}}^{\ell-1} \boldsymbol{x}_{i} \\
& =\mathbf{A}_{\mathrm{H}}^{\ell-1} \sum_{i=1}^{p} \beta_{i} \boldsymbol{x}_{i}=\mathbf{A}_{\mathrm{H}}^{\ell-1} \boldsymbol{j}
\end{aligned}
$$

i.e., the ℓ th column of $\mathbf{W}_{\mathbf{H}}(k)$.

Finally we elaborate on what is meant by "related walk matrices" in figure 4.2.
Proposition 4.13. Let G and H be two graphs. Then $\operatorname{Main}(\mathrm{G})=\operatorname{Main}(\mathrm{H})$ if and only if there is an invertible matrix \mathbf{Q} such that $\mathbf{W}_{\mathrm{G}} \mathbf{Q}=\mathbf{W}_{\mathrm{H}}$.

Proof. If $\operatorname{Main}(G)=\operatorname{Main}(H)$, then the columns of \mathbf{W}_{G} and $\mathbf{W}_{\mathbf{H}}$ are both bases for the same space by theorem 3.13. In particular, the columns of \mathbf{W}_{H} can be expressed as a linear combination of those of \mathbf{W}_{G}. Indeed, if the i th column \boldsymbol{c}_{i} is $\alpha_{i 1} \boldsymbol{j}+\alpha_{i 2} \mathbf{A}_{\mathrm{G}} \boldsymbol{j}+\cdots+$ $\alpha_{i p} \mathbf{A}_{\mathrm{G}}{ }^{p-1} \boldsymbol{j}$, then

$$
\mathbf{W}_{\mathrm{H}}=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
\boldsymbol{c}_{1} & \boldsymbol{c}_{2} & \cdots & \boldsymbol{c}_{p} \\
\mid & \mid & & \mid
\end{array}\right)=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
\boldsymbol{j} & \mathbf{A}_{\mathrm{G}} \boldsymbol{j} & \cdots & \mathbf{A}_{\mathrm{G}}{ }^{p-1} \boldsymbol{j} \\
\mid & \mid & & \mid
\end{array}\right) \underbrace{\left(\begin{array}{ccc}
\alpha_{11} & \cdots & \alpha_{1 p} \\
\vdots & \ddots & \vdots \\
\alpha_{p 1} & \cdots & \alpha_{p p}
\end{array}\right)}_{=\mathbf{Q}} .
$$

\mathbf{Q} must be invertible, since otherwise $\operatorname{rank}\left(\mathbf{W}_{\mathbf{H}}\right) \neq p$.
Now for the converse, in $\mathbf{W}_{\mathbf{H}}=\mathbf{W}_{\mathrm{G}} \mathbf{Q}$ the columns of \mathbf{W}_{G} are combined linearly by \mathbf{Q} so they are still members of Main (G). Since \mathbf{Q} is invertible, none of the columns of \mathbf{W}_{G} become linearly dependent, so they still span all of Main (G). Thus Main $(H)=$ $\operatorname{Main}(\mathrm{G})$.

Example 4.14. An example of graphs having related walk matrices is given in figure 4.6. These correspond to graphs 31 and 37 from [5], and were pointed out by Jeremy Curmi.

Graph G

Graph H

Figure 4.6: Graphs G and H have related walk matrices.

Indeed, we have

$$
\mathbf{W}_{\mathrm{G}}=\left(\begin{array}{ll}
1 & 2 \\
1 & 2 \\
1 & 2 \\
1 & 2 \\
1 & 5 \\
1 & 5
\end{array}\right)=\left(\begin{array}{ll}
1 & 3 \\
1 & 3 \\
1 & 3 \\
1 & 3 \\
1 & 4 \\
1 & 4
\end{array}\right)\left(\begin{array}{cc}
1 & -7 \\
0 & 3
\end{array}\right)=\mathbf{W}_{\mathrm{H}}\left(\begin{array}{cc}
1 & -7 \\
0 & 3
\end{array}\right)=\mathbf{W}_{\mathrm{H}} \mathbf{Q}
$$

This same pair of graphs also serves as a counterexample to the following: having the same main eigenspace does not necessarily mean they have the same main eigenvectors. Indeed, the linearly independent main eigenvectors of G are $\left(1,1,1,1, \frac{1}{4}(1 \pm \sqrt{33}), \frac{1}{4}(1 \pm\right.$ $\sqrt{33})$), whereas those of H are $\left(1,1,1,1, \frac{1}{4}(-1 \pm \sqrt{33}), \frac{1}{4}(-1 \pm \sqrt{33})\right)$.

We end with a conjecture which if true, would link CDC's more intimately to their main eigenvalues.

Conjecture 4.15. Let G and H be two graphs with $\mathrm{CDC}(\mathrm{G}) \simeq \mathrm{CDC}(\mathrm{H})$. Then G and H have the same main eigenvalues.

Remark 4.16. Even though in the appendix we narrow the search space to consider only graphs which are comain, the list is still exhaustive, because it was determined by an algorithm that there are no counterexamples to conjecture 4.15 on $\leqslant 8$ vertices.

APPENDIX

All Pairs of TF-Isomorphic Graphs on 8 Vertices

"What's the use of a book without pictures?"
Lewis Carroll
(Alice in Wonderland)

In this appendix, we give a complete list of all the TF-isomorphic graphs on 8 vertices, that is, all pairs of graphs G, H with $C D C(G) \simeq \operatorname{CDC}(H)$ and $G \nsim H$.

Since for any pair of TF-isomorphic graphs, we have

$$
\mathrm{CDC}\left(\mathrm{G}+\mathrm{K}_{1}\right) \simeq \mathrm{CDC}\left(\mathrm{H}+\mathrm{K}_{1}\right)
$$

by lemma 4.3 , it is clear that this list contains all possible TF-isomorphic graphs on $n \leqslant 8$ vertices (those pairs with $n<8$ will correspond to graphs with isolated vertices added to both, such as the first pair in the table).

This list was constructed by running a simple C program which made use of the list of non-isomorphic graphs on 8 vertices available on Brendan McKay's website. ${ }^{[13]}$ First, the large search space of $\binom{12346}{2}=76205685$ pairs of non-isomorphic graphs was significantly reduced to 1595 pairs of graphs which are comain using the QR algorithm (this step is justified by remark 4.16). This was the most intensive step computationally-it took an ordinary Linux home desktop around 25 minutes.

Then another program simply found the CDC's of each of the graphs which remained, and these were compared pairwise to check for isomorphism. This took around 5 seconds.

The images of the graphs were generated by importing the output of the C program into Mathematica. The vertices are coloured so that vertices which receive the same colour
have the same number of k-walks for any k. The graph numbers below correspond to the numbering given in McKay's list for non-isomorphic graphs on 8 vertices.

		Graph	Eigenvalues (main eigenvalues denoted in bold)	Walk Matrix	$\mathrm{CDC}(\mathrm{G}) \simeq \mathrm{CDC}(\mathrm{H})$
G	5358		$-1,-1,-1,1,1,1,-3,3$	$\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 1 \\ 1\end{array}\right)$	
	11716		$-1,-1,-1,1,1,1,-3,3$	$\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right)$	
	10867 11731		$\begin{gathered} 0,-1,1,-2, \frac{1}{2}(3-\sqrt{17}), \frac{1}{2}(3+\sqrt{17}), \\ \frac{1}{2}(-1-\sqrt{17}), \frac{1}{2}(\sqrt{17}-1) \end{gathered}$ $\begin{gathered} 0,-1,1,-2, \frac{1}{2}(3-\sqrt{17}), \frac{1}{2}(3+\sqrt{17}), \\ \frac{1}{2}(-1-\sqrt{17}), \frac{1}{2}(\sqrt{17}-1) \end{gathered}$	$\left(\begin{array}{ll} 1 & 3 \\ 1 & 3 \\ 1 & 4 \\ 1 & 4 \\ 1 & 3 \\ 1 & 3 \\ 1 & 4 \\ 1 & 4 \end{array}\right)$	

Bibliography

[1] S. Axler. Linear Algebra Done Right. Springer Verlag, 3rd edition, 2015.
[2] N. Biggs. Spectra of Graphs. Springer Verlag, 2nd edition, 2016.
[3] A. E. Brouwer and W. H. Haemers. Spectra of Graphs. Springer Verlag, 1st edition, 2012.
[4] L. Collins and I. Sciriha. On the walks and canonical double coverings of graphs with the same main eigenspace. arXiv:1906.05790 [math.CO], 2019.
[5] D. Cvetković and M. Petrić. A table of connected graphs on six vertices. Discrete Mathematics, 50:37-49, 1984.
[6] D. M. Cvetković, M. Doob, and H. Sachs. Spectra of Graphs: Theory and Applications. Heidelberg : Johann Ambrosius Barth, 3rd edition, 1995.
[7] R. Diestel. Graph Theory. Springer Verlag, 5th edition, 2016.
[8] C. Godsil and G. Royle. Algebraic Graph Theory, chapter 8, pages 163-192. Springer Verlag, 1st edition, 2001.
[9] I. N. Herstein. Topics in Algebra, chapter 3, pages 153-161. John Wiley \& Sons, 2nd edition, 1975.
[10] S. Kneebone. Königsberg bridge puzzle illustration. URL: https:// simonkneebone.com/2011/11/29/konigsberg-bridge-puzzle/, [Online]. Last accessed 28-04-2019].
[11] J. Lauri, R. Mizzi, and R. Scapellato. Two-fold orbital digraphs and other constructions. International Journal of Pure and Applied Mathematics, 1:63-93, 2004.
[12] M. Marcus and R. Ree. Diagonals of doubly stochastic matrices. The Quarterly Journal of Mathematics, 10:296-302, 1959.
[13] B. McKay. Graph data. URL: https://cs.anu.edu.au/people/Brendan.McKay/ data/graphs.html, [Online]. Last accessed 28-04-2019].
[14] P. Rowlinson. The main eigenvalues of a graph: a survey. Applicable Analysis and Discrete Mathematics, 1:445-471, 2007.
[15] B. Russell and A. N. Whitehead. Principia Mathematica (vol. 2), chapter 8, page 384. Cambridge University Press, 1912.
[16] I. Sciriha and D. M. Cardoso. Necessary and sufficient conditions for a Hamiltonian graph. Journal of Combinatorial Mathematics and Combinatorial Computing, 80:127-150, 2012.

Index

$f \upharpoonright X$, see domain restriction
k-cycle, see cycle
n-cycle, see cycle
adjacency matrix, 7
bipartite, 7
bipartite double covering, see canonical double covering
Birkhoff-von Neumann, 12
canonical double covering, 34
cardinality, 5
Cartesian product, see sets
CDC, see canonical double covering
comain, 25
complement, 8
complete graph, 8
component, 7
connected graph, 7
convex, 12
combination, 12
cospectral, 8
cycle, 7,8
degree, 6
disconnected graph, 7
domain restriction, 5
even cycle, see cycle
functions, 5

Gauss' lemma, 24
graph
complement, see complement
definition, 5
simple graph, 5
sum, see sum
union, see sum

Handshaking lemma, 8
Hermitian operator, 15
hiearchy, 40
induced subgraph, see subgraph
inner product, 15
inner product space, see inner product
isolated vertex, 8
isomorphic, see isomorphism
isomorphism, 6
main
angles, 25
eigenspace, 29
eigenvalue, 25
polynomial, 27
matrices, 5
natural numbers, 5
neighbour, 6
number of walks, 22
generating function, 27, 29
odd cycle, see cycle
orthogonal projection, 15
partite set, see bipartite
permutation, see permutation matrix
permutation matrix, 11
Perron-Frobenius, 26
polynomial, 23
content, 23
primitive, 23
power set, 5
projection, see orthogonal projection
restriction, see domain restriction
sets, 5
Cartesian product, 5
k-subsets, 5
spectral theorem, 18
subgraph, 7
sum, 8

TF-isomorphism, 40
union, see sum
vertex
degree, 6
neighbour, see neighbour
walk, 6
k-walk, 6
walk matrix, 31
k-walk matrix, 31

[^0]: 29 ${ }^{\text {th }}$ May, 2019
 Academic Year 2018/2019
 MAT3999 Project in Mathematics
 Version 1.3

[^1]: ${ }^{1} \delta_{i j}=1$ if $i=j$, and 0 otherwise. This is the $i j$ th entry of \mathbf{I}.

