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Abstract

The main eigenvalues of a graph G are the eigenvalues of its (0, 1)-adjacency matrix hav-

ing some corresponding eigenvector not orthogonal to the all-ones vector j = (1, . . . , 1).

In this dissertation, the relationship between the main eigenvalues of a graph and the

number of walks is discussed. The number of walks Nk of length k in the graph G is

expressed solely in terms of the main eigenvalues and main angles of G. The walk matri-

ces of two comain non-isomorphic graphs with the same main eigenspace are shown to

be of the same column space. Moreover, various properties of graphs relating the main

eigenvalues, eigenspaces, eigenvectors and canonical double covers are catergorised in a

hierarchical form.
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CHAPTER 0

Preface

A graph is a network of abstract objects called vertices in which some pairs are related:

such pairs are called edges. Pictorially, the vertices are represented by dots, and edges

are represented by lines joining those dots. A graph with n vertices can be represented

algebraically using an n × n matrix, where the ith row and jth column contains a 1

entry if vertex i is connected to vertex j, and a 0 entry if they are not connected. This

is called the adjacency matrix.

In applications, graphs are abstract representations of structures in which items are

connected. Social networking sites, such as Facebook, make use of graphs to represent

“friends” (vertices) and “friendships” (edges). Problems of finding “mutual friends”, for

example, make use of graph theoretic results. Graphs are also fundamental to the effec-

tiveness of Google’s PageRank algorithm, which determines the order in which results

appear in a Google search. In this context, vertices represent different webpages, and

two webpages are connected if one links to the other. A walk in such a graph corresponds

to starting from one webpage, and clicking links to travel to others. If a large number

of walks end in a particular webpage, then that webpage is “popular” so it is promoted

more than others.

Historically, graph theory was first conceived when Leonhard Euler released a paper on

the Königsberg bridge problem in 1736, which led to his formula relating edges, vertices

and faces of convex polyhedra. This paper is often pointed to as the birth of graph

theory and topology.

Spectral graph theory is the study of graphs from a linear algebraic point of view. The

subject explores the relation of the graph with the characteristic polynomial, eigenvalues

and eigenvectors of its adjacency matrix. Since adjacency matrices are (0, 1)-real sym-

metric matrices, a number of facts from linear algebra can be tailored more specifically
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Figure 1: Illustration of the Königsberg bridge puzzle[10]

to graphs, and this often results in significant strengthening of results.

Spectral graph theory emerged in the mid-twentieth century. The monograph by Cve-

tović, Doob and Sachs, Spectra of Graphs (1980), summarises a large portion of the

important results in this area.[6]
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CHAPTER 1

Introduction

“We can only see a short distance ahead,

but we can see plenty there that needs to be

done.”
Alan Turing

In this chapter, we establish some basic notation and terminology that will be used

throughout and state some rudimentary results, before giving an overview of the struc-

ture of the document.

1.1 Basic Terminology
Unless stated otherwise, small letters such as x, f or φ denote functions or elements

(members) of a set, ordinary capital letters such as V , E or Ω denote sets, sans-serif

capital letters such as G or P denote the names of graphs, small letters in bold font such

as x or v denote vectors, and capitalised bold letters such as A or M denote matrices.

The set of positive integers {1, 2, 3, . . . } is denoted by the symbol N, and for any n ∈ N
the subset {m ∈ N : m 6 n} = {1, . . . , n} is denoted by [n]. For any set A, we denote

the cardinality by |A|, and the power set {X : X ⊆ A} by ℘A. For any finite set A,

we denote the set {X ∈ ℘A : |X| = k} of all k-element subsets by
(
A
k

)
. The Cartesian

product of k sets A1, A2, . . . , Ak is denoted A1 × · · · ×Ak or
∏k
i=1Ai, and if Ai = A for

all i = 1, . . . , k, then we simply write Ak.

A function f with domain A and codomain B is written as f : A → B. If X ⊆ A, the

restriction of f to X is a function with domain X and codomain B, is denoted f � X,

and is defined by (f � X)(x) = f(x) for x ∈ X.

A (simple) graph G is a pair of sets (V,E) where V is finite, and E ⊆
(
V
2

)
, that is, E is

5
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Figure 1.1: Three equivalent representations of the graph G

some subset of unordered pairs from V . The elements of V are called vertices or nodes,

and the pairs in E are called edges. We sometimes denote the sets V and E by V (G)

and E(G), to show that they belong to the graph G. Typically, we take V = [n] for some

n ∈ N.

Example 1.1. Consider the graph G where V (G) = [5], and

E(G) = {{1, 2}, {1, 3}, {2, 3}, {2, 4}, {3, 4}, {4, 5}}.

These two sets define a graph. The reason we call this pair of sets a ‘graph’ is because

we like to associate with them a graphical representation consisting of dots (represent-

ing vertices in V ) connected by lines (which represent the edges in E), as depicted in

figure 1.1. Note that many such representations are possible. �

Unless stated otherwise, the number of vertices |V (G)| of a graph G will be denoted by

the letter n, and the number of edges |E(G)| by the letter m.

Given a vertex v ∈ V in a graph G, the set of neighbours of v, denoted NG(v) or just

N(v), is the set

N(v) = {u ∈ V : {u, v} ∈ E}

of vertices joined to v by an edge. The number |N(v)| of neighbours of v ∈ V is the

degree of v in G, denoted degG(v) or simply deg(v).

Two graphs G and H are isomorphic, written G ' H, if H is simply G with its vertices

relabelled; i.e., if there exists a bijection π : V (G)→ V (H) such that V (H) = {π(v) : v ∈
V (G)} and

E(H) = {{π(u), π(v)} : {u, v} ∈ E(G)}.

A k-walk or walk of length k in a graph G is a (k+1)-tuple (v0, . . . , vk) ∈ V k+1 such that

{vi−1, vi} ∈ E for all 1 6 i 6 k, and a walk in G is simply any k-walk in G. For example,

(1, 2, 3, 4) and (1, 2, 3, 2, 1) are walks in the graph of figure 1.1, whereas (1, 2, 3, 5) is not

a walk. We also use the terminology “a walk from v0 to vk” to describe (v0, . . . , vk).

6
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A walk (v0, . . . , vk) is said to be a path if in addition to being a walk, we have that

v0, . . . , vk are all distinct.

A subgraph of a graph G is a graph H such that V (H) ⊆ V (G) and E(H) ⊆ E(G). Given

any subset U ⊆ V (G), then the induced subgraph on the vertices of U is the subgraph H

with V (H) = U and E(H) = E(G) ∩
(
U
2

)
. This subgraph H is usually denoted G[U ] or

G � U .

A graph is said to be connected if for every pair of vertices {u, v} ∈
(
V
2

)
, there is a

walk from u to v. Otherwise, we say the graph is disconnected . The largest subgraphs

of a disconnected graph (with respect to number of vertices) which are connected are

called the components of that graph. If a graph G has a k-walk (v0, · · · , vk) such that

all v0, . . . , vk−1 are distinct and v0 = vk, then this walk is said to be a k-cycle or simply

a cycle. If k is odd or even, we use the terminology odd (even) cycle.

A graph is said to be bipartite if its vertex set V can be split as V = V1 ∪ V2, where

we call V1 and V2 the partite sets, such that V1 ∩ V2 = ∅, and for all {u, v} ∈ E, either

u ∈ V1 and v ∈ V2 or u ∈ V2 and v ∈ V1. In other words, the vertex set V can be split

into two disjoint sets such that all edges in the graph are from one of these sets to the

other.

We denote vectors in Rn using the usual notation v = (vi) or (vi)n, where vi : [n] → R

denotes the general ith entry, and similarly for matrices we write A = (aij) (or (aij)m×n

when we wish to emphasise the dimensions), where aij is the entry in the ith row and

jth column, i.e., the ijth entry. The ith entry of a vector v ∈ Rn can be accessed using

the notation [v]i, and similarly the ijth entry of a matrix M is denoted by [M]ij .

The all-ones vector (1, . . . , 1) = (1)n will be denoted by j, and the all-ones matrix (1)n×n,

i.e., the n× n matrix with ones everywhere, will be denoted by J.

The adjacency matrix of a graph G, denoted A(G) or simply A when the context is

clear, is the symmetric n× n matrix (aij), where

aij =

1 if {i, j} ∈ E(G),

0 otherwise.

We use terminology from linear algebra about a graph G in reference to its adjacency

matrix A. For example, the eigenvalues and eigenvectors of a graph G are respectively

those of the matrix A.

7
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If two graphs G and H have the same eigenvalues and multiplicities, then they are said

to be cospectral .

Let V be a finite dimensional vector space with dimension n. We denote the eigenspace

{v ∈ V : Av = λv} of a matrix A : V → V corresponding to the eigenvalue λ by EA(λ)

or simply E(λ). If A is the adjacency matrix of a graph G, we may also write EG(λ).

The n-cycle, denoted Cn, is the graph ([n], {{i, i+ 1} : i ∈ [n− 1]} ∪ {{n, 1}}), and the

complete graph on n vertices, denoted Kn, is the graph ([n],
(

[n]
2

)
).

Let G be a graph. The complement of G is another graph Ḡ with the same vertex

set V (Ḡ) = V (G), but complement edge set E(Ḡ) =
(
V
2

)
r E(G). In other words,

{u, v} ∈ E(Ḡ) if and only if {u, v} /∈ E(G), and vice-versa.

Let G1, . . . ,Gk be graphs. Then the sum or union of G1, . . . ,Gk, denoted by G1 + · · ·+Gk

or
∑k

i=1 Gi, is the graph G with vertex set V (G) =
⋃k
i=1 V (Gi)× {i} and edges E(G) =⋃k

i=1{{(u, i), (v, i)} : {u, v} ∈ E(Gi)}. The sum
∑n

i=1 G of n copies of G with itself is

denoted by nG. Clearly if a graph G is disconnected and has components G1, . . . ,Gk,

then G '
∑k

i=1 Gi. If one of the components is isomorphic to K1, then it is said to be

an isolated vertex .

1.2 Some Basic Results
In this section we give proofs for some very straightforward results which will be assumed

throughout the dissertation.

Proposition 1.2 (Handshaking Lemma). Let G = (V,E) be a graph. Then∑
v∈V

deg(v) = 2|E|.

Proof. By definition, deg v counts the number of edges incident to the vertex v. Therefore

when summing all the degrees, each edge is counted once by each vertex to which it is

incident. But every edge is incident to precisely two vertices, so each edge is counted

twice, giving a total of 2|E|.

A more formal proof of the Handshaking lemma would involve expressing deg(v) in

terms of N(v) and interchanging summations. This is the so-called double counting

proof technique.

8
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Proposition 1.3. A graph is bipartite if and only if it contains no odd cycles.

Proof. Suppose a graph G contains an odd cycle (v0, . . . , v2k+1). If we try to partition

the vertices of G into two partite sets V1 and V2, then we have to place adjacent vertices

in the cycle in separate sets. Without loss of generality, place v0, v2, . . . , v2k in V1, and

v1, v3, . . . , v2k−1 in V2. But v2k+1 = v0, so we cannot place it in V1 (since it is adjacent to

v2k) nor in V2 (since it is adjacent to v1). Thus V cannot be partitioned, and therefore

G is not bipartite.

For the converse, first observe that if G is disconnected, and each component G1, . . . ,Gk is

bipartite, each with partite sets U1 and U ′1, U2 and U ′2, . . . , Uk and U ′k, then U =
⋃k
i=1 Ui

and U ′ =
⋃k
i=1 U

′
i gives partite sets for G. Thus, it suffices to prove the converse for a

connected graph.

Suppose G is connected and has no odd cycles. Pick a vertex v ∈ V (G). Define N0(v) =

{v}, Nk+1(v) =
⋃
u∈N(v)Nk(u), and consider the sets V1 =

⋃n
k=0N2k(v) and V2 =⋃n

k=0N2k+1(v), where n = |V |. Clearly since G is connected, V1 ∪V2 = V . Now suppose

two vertices u,w ∈ V1 are connected by an edge. Being in V1, there are distinct integers

k, ` so that u ∈ N2k(v) and w ∈ N2`(v). Without loss of generality, say k < `. Then

by the construction of the sets V1 and V2, there is a path (u = u2k, u2k+1, . . . , u2` = w)

where each ui ∈ Ni(v). But this path contains an odd number of vertices, and since u is

joined to w, we get an odd cycle, which contradicts the hypothesis.

Thus no two vertices in V1 can be joined by an edge, and similarly for V2. So G is

bipartite.

Proposition 1.4. For any graph G, we have

A(Ḡ) = J− I−A(G).

Proof. Let āij = [A(Ḡ)]ij . Then the claim is āij = 1−δij−aij , where δij is the Kronecker

delta.1 Clearly when {i, j} ∈ E, the formula gives āij = 0, whereas when {i, j} 6= E, it

gives āij = 1, as desired. When i = j, {i, j} = {i} /∈
(
V
2

)
, so we need the −δij to make

the diagonal zero.

1δij = 1 if i = j, and 0 otherwise. This is the ijth entry of I.

9
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Proposition 1.5. Let G1, . . . ,Gk be graphs. Then

A(G1 + · · ·+ Gk) =


A(G1) O

. . .

O A(Gk)

 .

Proof. We prove the case k = 2, the general case follows by induction. If G1 has n1 ver-

tices and G2 has n2 vertices, then G1 +G2 has n1 +n2 vertices, labelled (1, 1), . . . , (n1, 1),

(1, 2), . . . , (n2, 2) by definition. Clearly the adjacencies between (1, 1), . . . , (n1, 1) are the

same as those of G1, and the adjacencies between (1, 2), . . . , (n2, 2) are the same as those

of G2. There is no edge of the form {(u, 1), (v, 2)}. Hence the adjacency matrix is

A(G1 + G2) =

(
A(G1) O

O A(G2)

)
,

as required.

1.3 Document Structure
In the first chapter, we give some preliminary results, mostly about linear algebra, which

the reader might not have come across in typical/standard treatments. In particular,

the results are aimed to be used with the adjacency matrix of a graph. The chapter ends

with a result on polynomials which will be utilised in the following chapter.

The second chapter introduces the ideas of main eigenvectors, main eigenvalues, main

polynomials, and main eigenspaces. The number of walks Nk of length k is expressed

solely in terms of the main angles and main eigenvalues of a graph. Generating functions

for Nk are derived, and the main polynomial mG(x) is shown to have integer coefficients.

These concepts are then applied to obtain results on walk matrices.

In the third chapter, canonical double covers are introduced and some standard facts

are proven about them. Some original results are presented in this chapter, in particular

the proofs of theorem 4.4 and the hierarchical results of section 4.3.

Finally in the appendix, a list of all pairs of non-isomorphic graphs on n 6 8 vertices

having the same canonical double cover is presented.

10



CHAPTER 2

Preliminary Matrix Theory

“We think basis-free, we write basis-free, but

when the chips are down, we close the office

door and compute with matrices like fury.”

Irving Kaplansky

In this chapter, we provide proofs of some fairly common algebraic results which concern

symmetric (0, 1)-matrices.

2.1 Permutation Matrices
First we go to the notion of a permutation matrix. These are matrices whose columns are

simply permutations of the columns of the identity matrix. We define them as follows.

Definition 2.1 (Permutation Matrix). A square matrix P = (pij) is said to be a per-

mutation matrix if each row and column contains precisely one 1, and the remaining

entries are zero.

More precisely, for each fixed i, there is precisely one j = j′ such that pij′ = 1, and

pij = 0 otherwise. Similarly, for each fixed j, there is precisely one i = i′ such that

pi′j = 1, and pij = 0 otherwise. �

Using a pigeonhole argument, one can easily see that permutation matrices correspond to

permutations of the columns of the identity. Indeed, there is a natural correspondence:

any permutation π : [n] → [n] of the numbers 1, . . . , n corresponds to the permutation

matrix Pπ = (pij), where pij = 1 if π(i) = j, and pij = 0 otherwise. Consequently, the

number of n× n permutation matrices is n!.

A basic fact about permutation matrix is that they are orthogonal:

11
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Proposition 2.2. Let P be a permutation matrix. Then PPT = I.

Proof. If P = (pij)n×n, then

[PPT]ij =

n∑
k=1

pkipkj =

1 if i = j

0 otherwise,

as required.

Moreover, permutation matrices are the only orthogonal matrices having non-negative

entries:

Proposition 2.3. Let P = (pij) be an n × n matrix with pij > 0 for all i, j ∈ [n] and

PPT = I. Then P is a permutation matrix.

Proof. Each row and column of P must contain at least one non-zero entry, otherwise

PPT 6= I since the product will have a row/column of zeros.

Now suppose two entries of P in the ith row are non-zero, say pij and pij′ where j 6= j′.

But then the entry in the jj′th position in PPT will not be zero, a contradiction. A

similar argument yields the corresponding fact for columns.

Finally, suppose one of the non-zero entries of P is not equal to 1, say in the ijth position.

Then the entry in the jjth position of PPT is
∑n

k=1 p
2
kj = p2

ij 6= 1, a contradiction.

Remark 2.4 (Birkhoff–von Neumann). A famous result about permutation matrices is

the so-called Birkhoff–von Neumann theorem.

A matrix A = (aij) is said to be doubly stochastic if the sum of each row and column is

1, i.e., if for all i and for all j, we have
∑n

k=1 aik =
∑n

k=1 akj = 1. Such matrices are of

interest in probability theory, particularly when representing Markov chains.

Clearly all permutations are doubly stochastic. Moreover, according to the theorem:

every n × n doubly stochastic matrix may be written as a convex combination of the

n! different n × n permutation matrices P1, . . . ,Pn!. In other words, if A is doubly

stochastic, then there exist α1, . . . , αn! ∈ R with α1 + · · · + αn! = 1 so that we may

decompose A as

A = α1P1 + · · ·+ αn!Pn!.

12
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Even though there are potentially n! terms in such a decomposition, it has been shown

that there are never more than (n− 1)2 + 1 terms necessary, although determining the

minimal expansion is NP-hard.[12]

We only mention this theorem here, but do not provide a proof, as we will not be making

use of it in later chapters. �

Now we go to perhaps the most important use of permutation matrices as far as we

are concerned—they provide us with an equivalent formulation of the notion of graph

isomorphism.

Proposition 2.5. Let G and H be two graphs having adjacency matrices AG = (gij) and

AH = (hij) respectively. Then G ' H if and only if there exists a permutation matrix P

such that PTAGP = AH.

Proof. Suppose G and H are isomorphic, i.e., there is a bijection π : V (G)→ V (H) such

that {u, v} ∈ E(G) if and only if {π(u), π(v)} ∈ E(H). Define the n×n matrix P = (pij)

by

pij =

1 if π(i) = j

0 otherwise,

i.e., there is a 1 in row i and column j if vertex i in G is relabelled to j in H, and

a 0 otherwise. Since π is a bijection, fixing i, one has that pij can only be 1 for a

single value of j and 0 otherwise; similarly if j is fixed, there is only one value of i such

that pij = 1. Thus each row and column of P contains precisely one 1, making it a

permutation matrix.

Now by matrix multiplication, the ijth entry of PTAGP is

n∑
k=1

n∑
`=1

pkigk`p`j = puiguvpvj ,

since by definition of pij and gij , the terms in this double sum can only be non-zero if

there are u, v ∈ V (G) such that π(u) = i, {u, v} ∈ E(G), and π(v) = j; which is true if

and only if {π(u), π(v)} = {i, j} ∈ E(H). In other words,

n∑
k=1

n∑
`=1

pkigk`p`j =

1 if {i, j} ∈ E(H)

0 otherwise
= hij ,

and so PTAGP = (hij) = AH.

13
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Conversely, suppose P = (pij) is a permutation matrix such that PTAGP = AH, and

define

π = {i 7→ j : pij = 1}.

Clearly π is a bijection from V (G) to V (H), since for each i there is a j such that pij = 1,

and vice-versa. Moreover,

{u, v} ∈ E(G) ⇐⇒ guv = 1

⇐⇒ puiguvpvj = 1 (where π(i) = u, π(j) = v)

⇐⇒ puiguvpvj + 0 = 1

⇐⇒ puiguvpvj +

n∑
k=1
k 6=u

n∑
`=1
`6=v

pkigk`p`j = 1

⇐⇒
n∑
k=1

n∑
`=1

pkigk`p`j = 1

⇐⇒ hij = 1 ⇐⇒ {i, j} = {π(u), π(v)} ∈ E(H),

i.e., G ' H, as required.

An immediate consequence of this result is the following.

Corollary 2.6. Let G and H be isomorphic graphs. Then G and H have the same:

(i) rank,

(ii) characteristic polynomial,

(iii) determinant,

(iv) trace,

(v) eigenvalues and multiplicities,

(vi) minimum polynomial.

Proof. Since G ' H, then there is a permutation matrix P such that PTAGP = AH.

Moreover, since P is a permutation matrix, then by proposition 2.2 PT = P−1, so in fact

P−1AGP = AH. Hence the adjacency matrices are similar, and thus properties (i)–(vi)

follow immediately by usual linear algebra theory on similar matrices.

Therefore, since isomorphic graphs have many properties in common, we will not give

importance to the labelling of the vertices, and omit vertex numbering in future figures

and examples (unless it makes a difference to our considerations).

14
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2.2 Spectral Results
Some important facts about eigenvalues and eigenvectors are more fruitful when we

restrict our considerations to adjacency matrices of graphs.

Suppose V = V (C) is a complex vector space of finite dimension with basis {b1, . . . , bn}.
Then 〈 · , · 〉 : V × V → R defined by 〈x,y〉 = xTȳ, where the bar denotes complex

conjugation, defines an inner product on V ; that is, the following properties hold:

(i)
〈x + y, z〉 = 〈x, z〉+ 〈y, z〉, and

〈λx,y〉 = λ〈x,y〉,
(Linearity in the first coordinate)

(ii) 〈x,y〉 = 〈y,x〉, (Conjugate symmetry)

(iii) 〈x,x〉 > 0, and 〈x,x〉 = 0 ⇐⇒ x = 0. (Positivity)

An operator A : V → V is Hermitian if for all x,y ∈ V , 〈Ax,y〉 = 〈x,Ay〉.

Proposition 2.7. Let A : V → V be an operator. Then A is Hermitian if and only if

A = ĀT.

Proof. Suppose A Hermitian. Then

aij = 〈Abi, bj〉 = 〈bi,Abj〉 = 〈Abj , bi〉 = aji,

so A = ĀT. Conversely, suppose ĀT = A. Thus for any x,y ∈ V ,

〈Ax,y〉 = Ax Ty = x̄TĀTy = x̄TAy = 〈x,Ay〉,

thus A is Hermitian, as required.

Since the adjacency matrix of a graph is real and symmetric, it follows that it is a

Hermitian operator.

2.2.1 Orthogonal Projections
Now we take a look at orthogonal projections, which help us obtain the spectral decom-

position of an operator.

Definition 2.8 (Orthogonal Projection). The orthogonal projection of v onto u, where

15
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v

u
Pu(v)

Figure 2.1: Illustration of definition 2.8 in R2.

u,v ∈ Rn, u 6= 0, denoted Pu(v), is the vector given by

Pu(v) =
〈v,u〉
‖u‖2

u.

More generally, the orthogonal projection of v onto a subspace U 6 V , denoted PU (v),

is the vector

PU (v) =
r∑
i=1

Pui(v),

where {u1,u2, . . . ,ur} is an orthonormal basis for U . �

Even though we define the orthogonal projection PU : V → U in terms of some or-

thonormal basis of U , it is in fact independent of which orthonormal basis is chosen.

This follows from the following fact.

Proposition 2.9. Let U 6 V be a subspace, and let v ∈ V . Then PU (v) is the unique

u ∈ U such that 〈v − u,x〉 = 0 for all x ∈ U .

Proof. Fix an orthonormal basis {u1, . . . ,ur} for U . Clearly for any uj ,

〈v −PU (v),uj〉 =

〈
v −

r∑
i=1

〈v,ui〉
‖ui‖2

ui,uj

〉

= 〈v,uj〉 −
r∑
i=1

〈v,ui〉
‖ui‖2

〈ui,uj〉

= 〈v,uj〉 − 〈v,uj〉 −
∑
i 6=j

〈v,ui〉
‖ui‖2

〈ui,uj〉︸ ︷︷ ︸
=0

= 0,

16



MAT3999 §2.2. Spectral Results

and hence for any vector
∑r

i=1 αiui in U , we have〈
v −PU (v),

r∑
i=1

αiui

〉
=

r∑
i=1

αi〈v −PU (v),ui〉 = 0.

Now to show that there is only one vector with this property, suppose there are two

vectors u,u′ such that for any x ∈ U , 〈v−u,x〉 = 〈v−u′,x〉 = 0. Then for any x ∈ U ,

〈v − u,x〉 − 〈v − u′,x〉 = 0

=⇒ 〈(v − u)− (v − u′),x〉 = 0

=⇒ 〈u− u′,x〉 = 0

=⇒ 〈u− u′,u− u′〉 = 0 since u− u′ ∈ U

=⇒ u = u′.

Since the projection of v onto U is the unique vector satisfying the property of proposi-

tion 2.9, then the orthonormal basis chosen does not make a difference.

A nice property about projections is their idempotency.

Proposition 2.10. Let U 6 V be a subspace. Then PU
2 = PU .

Proof. Let v ∈ V . By proposition 2.9, the projection u = PU (v) is the unique u ∈ U
such that 〈v − u,x〉 = 0 for all x ∈ U . Similarly, u′ = PU (u) = PU

2(v) is the unique

u′ ∈ U such that 〈u−u′,x〉 = 0. But 〈u−u′,x〉 = 0 =⇒ 〈u,x〉 = 〈u′,x〉 for all x. It

follows that u = u′, i.e., that PU (v) = PU
2(v).

Another useful property of projections is the following.

Proposition 2.11. Let PU : V → U be a projection, and let BV = {b1, . . . , bn} be an

orthonormal basis for V , a subset BU of which forms a basis for U . With respect to this

basis, PU has matrix representation

PU =


e1 0 · · · 0

0 e2 · · · 0
...

...
. . .

...

0 0 · · · en


where ei = 1 if bi ∈ BU , and ei = 0 otherwise.

17
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Proof. Let v = α1b1 + · · ·+ αnbn ∈ V . Then

PU (v) =
∑
b∈BU

〈v, b〉
‖b‖2

b =
n∑
i=1

n∑
j=1

αjei 〈bj , bi〉︸ ︷︷ ︸
= 0 unless
bi = bj

bi =
n∑
i=1

αieibi

=


e1 0 · · · 0

0 e2 · · · 0
...

...
. . .

...

0 0 · · · en



α1

α2

...

αn

 ,

as required.

As a consequence of this matrix representation, we have the following easy corollaries.

Corollary 2.12. Suppose V =
⊕s

i=1 Ui. Then

s∑
i=1

PUi = I.

Proof. B =
⋃s
i=1BUi is an orthonormal basis for V , where BUi is an orthonormal basis

for each Ui. The matrix representation of each PUi is as in proposition 2.11. Any overlap

of diagonal entries amongst the PUi ’s contradicts that the sum is direct, whereas any

diagonal entry left out contradicts that B spans V .

Corollary 2.13. Let PU : V → U be an orthogonal projection. Then

PUPU
T = PU = I � U.

2.2.2 The Spectral Theorem
Now we go to the spectral theorem, an important result which illustrates a lot of the

nice properties of Hermitian operators. In particular, it allows us to decompose them as

a sum of projections onto their eigenspaces.

Theorem 2.14 (Spectral Theorem). Let A : V → V be a Hermitian operator with

distinct eigenvalues µ1, · · · , µs. Then:

(i) Each eigenvalue µ of A is real,

18
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(ii) There is an orthonormal basis for V consisting solely of eigenvectors of A. Con-

sequently V =
⊕s

i=1 EA(µi),

(iii) A may be written as

A = µ1P1 + · · ·+ µsPs

where Pi : V → EA(µi) is the orthogonal projection onto the eigenspace corre-

sponding to µi.

Proof. For (i), if v 6= 0 and Av = µv, then

µ‖v‖2 = 〈µv,v〉 = 〈Av,v〉 = 〈v,Av〉 = 〈v, µv〉 = 〈µv,v〉 = µ̄‖v‖2,

so µ = µ̄, i.e., µ is real.

For (ii), we proceed by induction on dimV . If V is of dimension zero, then the empty

set is a basis for V and V = {0} is the result of an empty direct sum.

Suppose dimV > 1. By the fundamental theorem of algebra, the characteristic polyno-

mial of A has a root µ and a corresponding unit eigenvector v. Moreover by (i) above,

µ is real.

Now consider the space U = {v}⊥, and note that for all u ∈ U ,

〈Au,v〉 = 〈u,Av〉 = 〈u, µv〉 = µ̄〈u,v〉 = 0,

so Au ∈ U , i.e., U is A-invariant. Since V = U ⊕ U⊥ and dimU⊥ = 1, it follows

that dimV = dimU + 1 > dimU , so we may apply the inductive hypothesis to get an

orthonormal basis B for U in terms of eigenvectors of A � U . B ∪{v} gives the required

basis.

Since each eigenvector of A in B∪{v} is in its eigenspace, and by proposition 2.17 below,

eigenvectors from different eigenspaces are independent and orthogonal, it follows that

V =
⊕s

i=1 EA(µi).

Finally for (iii), we know that the matrix representation of A in terms of a basis of
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eigenvectors is diagonal. By (ii) above, A has such a basis, so we can write

A =


µ1 . . .

µ1
O

. . .

O
µs . . .

µs


where µ1, . . . µs are the distinct eigenvalues of A, each appearing m(µi) times, where

m(µi) is the multiplicity of µi in the characteristic polynomial φA. Hence

A = µ1


1 . . .

1
O

. . .

O O

+ · · ·+ µs


O O

. . .

O
1 . . .

1


= µ1P1 + · · ·+ µsPs

by proposition 2.11.

Example 2.15. Suppose

A =

1 1 4

1 1 4

4 4 −2

 .

Then φA(λ) = λ3 − 36λ, so the eigenvalues of A are 0 and ±6. Moreover, the corre-

sponding orthonormal eigenvectors of A are the columns of the transition matrix

P =


− 1√

2
1√
3
− 1√

6
1√
2

1√
3
− 1√

6

0 1√
3

2√
6

 .

With respect to this basis, A may be written as

A =

0 0 0

0 6 0

0 0 −6

 = 0

1 0 0

0 0 0

0 0 0

+ 6

0 0 0

0 1 0

0 0 0

+−6

0 0 0

0 0 0

0 0 1


= 0PE(0) + 6PE(6) − 6PE(6),
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or, with respect to the standard basis,

A = 0


1
2 −1

2 0

−1
2

1
2 0

0 0 0

+ 6


1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

+−6


1
6

1
6 −1

3
1
6

1
6 −1

3

−1
3 −1

3
2
3

 .

�

As a consequence, we immediately get the following.

Corollary 2.16. Let G be a graph with |V (G)| = n. Then Rn has a basis in terms of

the eigenvectors of G.

Proof. The adjacency matrix of a graph is a linear operator A : Rn → Rn. Moreover,

the adjacency matrix of a graph is symmetric, so by the spectral theorem the result

follows.

We will also find the following fact useful.

Proposition 2.17. If A : V → V is Hermitian, then any eigenvectors belonging to

distinct eigenvalues are linearly independent and orthogonal.

Proof. Suppose Ax = λx and Ay = µy where λ 6= µ and x 6= 0 6= y.

We do not need the Hermitian property for independence, indeed, suppose ax+ by = 0.

Then

0 = A0 = A(ax + by) = aλx + bµy (2.1)

Moreover, ax + by = 0 =⇒ aλx + bλy = 0. Subtracting this from (2.1), we get

(λ − µ)ax = 0. Since λ and µ are different and x 6= 0, we must have that a = 0.

Multiplying ax + by = 0 by µ instead similarly yields that b = 0, as required.

Now for orthogonality, observe that

(λ− µ̄)〈x,y〉 = 〈λx,y〉 − 〈x, µy〉 = 〈Ax,y〉 − 〈x,Ay〉

= 〈Ax,y〉 − 〈Ax,y〉 = 0,

and since λ 6= µ = µ̄ (eigenvalues are real by the spectral theorem), then it follows that

〈x,y〉 = 0.
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2.3 Number of Walks
In this section, we make an important observation about entries of powers of the adja-

cency matrix of a graph; namely, that they encode the number of walks in the graph.

Theorem 2.18. Let G be a graph with adjacency matrix A. The number of walks of

length k from vertex i to vertex j is the ijth entry of Ak.

Proof. By induction on k. Let Wij(k) denote the set of walks of length k from i to j.

For the base case,

Wij(1) = {(v0, v1) : {v0, v1} ∈ E, v0 = i and v1 = j}

=

{(i, j)} if {i, j} ∈ E

∅ otherwise,

so |Wij(1)| = 1 if {i, j} ∈ E and 0 otherwise, i.e., |Wij(1)| = aij = [A1]ij .

Now let k > 1. Then

Wij(k) = {(v0, . . . , vk) : {vi−1, vi} ∈ E for 1 6 i 6 k, v0 = i and vk = j}

= {(v0, . . . , `, j) : (v0, · · · , `) ∈Wi`(k − 1) and ` ∈ N(j)}

=
⋃

`∈N(j)

{(v0, . . . , `, j) : (v0, · · · , `) ∈Wi`(k − 1)}

and consequently,

|Wij(k)| =
∑

`∈N(j)

|{(v0, . . . , `, j) : (v0, · · · , `) ∈Wi`(k − 1)}|

=

n∑
`=1

a`j |{(v0, . . . , `, j) : (v0, · · · , `) ∈Wi`(k − 1)}|

=

n∑
`=1

a`j |Wi`(k − 1)| =
n∑
`=1

[Ak−1]i` a`j = [Ak],

by the induction hypothesis.

Corollary 2.19. The number of walks of length k starting from vertex i is the ith entry

of Akj.

Proof. Let Wij(k) be as in the proof of theorem 2.18. The number of walks of length k
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from vertex i is then∣∣∣∣ ⋃
j∈V

Wij(k)

∣∣∣∣ =
∑
j∈V
|Wij(k)| =

∑
j∈V

[Ak]ij =

n∑
j=1

[Ak]ij 1 = [Akj]i,

as required.

Corollary 2.20. Let G be a graph with adjacency matrix A, having e edges and t

triangles. Then

(i) tr A = 0,

(ii) tr A2 = 2e,

(iii) tr A3 = 6t.

Proof. (i) follows by definition of A. For (ii), observe that the entries on the diagonal

of A2 are those walks of length 2 from a vertex to itself. At each vertex v, there are

deg v such walks, namely (v, n, v) for n ∈ N(v). Thus tr A2 =
∑

v∈V deg v = 2e by the

handshaking lemma.

Finally for (iii), observe that each walk of length 3 from a vertex u to itself, (u, v, w, u),

corresponds to a triangle. However each triangle is counted six times: indeed, (u, v, w, u),

(u,w, v, u), (v, u, w, v), (v, w, u, v), (w, u, v, w) and (w, v, u, w) all correspond to the same

triangle {u, v, w}. Thus tr A3 =
∑

v∈V [A3]ii = 6t.

Since the trace of a matrix is the sum of eigenvalues, then the spectrum of a graph

determines the number of vertices, edges and triangles. It is difficult to generalise corol-

lary 2.20, as K1,4 and K1 + C4 are cospectral yet they do not have the same number of

4-cycles.

2.4 Gauss’ Lemma
We conclude this chapter with a useful result on polynomials. Z[x] and Q[x] denote

the rings of polynomials over the integers and the rationals respectively. Reference was

made to [9] for the results in this section.

Definitions 2.21 (Polynomial Terminology). The content of a polynomial p = a0 +

a1x+ · · ·+ anx
n ∈ Z[x] is the greatest common divisor of its coefficients ai.

A polynomial is said to be primitive if its content is 1. �
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Clearly any polynomial p ∈ Z[x] with content c can be written as cq(x) where q is

primitive.

Lemma 2.22. Let p, q ∈ Z[x] be primitive polynomials. Then the product pq is primi-

tive.

Proof. Let p = a0 + · · · + anx
n and q = b0 + · · · bmxm, and for contradiction, suppose

that pq has content c 6= 1. In particular, c has some prime factor d. Since p and q are

primitive, then d does not divide at least one coefficient of p and of q. Let i and j be

the smallest subscripts for which d does not divide ai and does not divide bj .

In pq, the coefficient of xi+j is

ci+j = aibj + (ai+1bj−1 + · · ·+ ai+jb0)︸ ︷︷ ︸
=:A

+ (ai−1bj+1 + · · ·+ a0bi+j)︸ ︷︷ ︸
=:B

.

By the minimality of i and j, d divides both A and B. Since d is the content of pq, d

also divides ci+j . But the above implies that d divides aibj , which is a contradiction,

since d is prime and does not divide ai nor bj .

Theorem 2.23 (Gauss’ Lemma). If a primitive polynomial p ∈ Z[x] can be factorised

as u(x)v(x) where u, v ∈ Q[x], then it can be factorised as s(x)t(x) where s, t ∈ Z[x].

Proof. If p(x) = u(x)v(x), then by taking out common factors and finding the lowest

common denominator, we can write p = a
b s(x)t(x) where a and b are integers and s, t

are both primitive. Thus b p(x) = a s(x)t(x). Since p is primitive, the content of bp is

b, and similarly the product st is primitive by lemma 2.22, so the content of ast is a.

Therefore a = b, and p(x) = s(x)t(x), as required.
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CHAPTER 3

Main Eigenvalues

“All truly great ideas are conceived whilst

walking.”

Friedrich Nietzsche

The all-ones vector j = (1, . . . , 1) plays an important role when determining the number

of walks of fixed length from a chosen starting vertex, as we have seen in corollary 2.19.

In this chapter, the vector j and its relationship with the eigenspaces of a graph are

examined. Many of the ideas presented here are from [16], [6] and [14].

Definitions 3.1 (Main Eigenvalue). Let G be a graph. An eigenvalue µ of G is said to

be main if the corresponding eigenspace E(µ) is not orthogonal to j, i.e., there exists

x ∈ E(µ) such that 〈x, j〉 6= 0.

Two graphs having the same main eigenvalues are said to be comain. �

3.1 Main Angles
Suppose that A(G) has spectral decomposition

A = µ1P1 + µ2P2 + · · ·+ µsPs

where the first p eigenvalues µ1, µ2, · · · , µp are main, and the remaining eigenvalues

µp+1, · · · , µs are non-main. Then main angles ϑ1, . . . , ϑs of G are the numbers

ϑi =
1√
n
‖Pi j‖
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i.e., the cosines of the angles between j and the eigenspaces E(µi). Evidently, µi is main

if and only if ϑi 6= 0. Moreover, since

‖j‖2 = jTj = jT(P1
TP1 + · · ·+ Ps

TPs︸ ︷︷ ︸
=I

)j = (P1j)T(P1j) + · · ·+ (Psj)T(Psj)

= ‖P1j‖2 + · · ·+ ‖Psj‖2,

we have that ϑ2
1 + · · ·+ ϑ2

p = 1.

It is also worth noting that by the Perron–Frobenius theorem, every graph G has a unique

largest eigenvalue having a corresponding eigenvector with strictly positive components.

In particular, this eigenvector cannot be orthogonal to j; so the largest eigenvalue of a

graph G is always main.

The main angles of a graph give us a nice formula for the number of walks.

Proposition 3.2. Let G be a graph on n vertices, let µ1, . . . , µp be its main eigenvalues,

and let Nk be the number of walks of length k in G. Then

Nk = n(ϑ1
2µ1

k + · · ·+ ϑp
2µp

k).

Proof. Suppose A has spectral decomposition µ1P1 + · · ·+ µsPs. Then

Aj = µ1P1j + · · ·+ µpPpj + µp+1Pp+1j + · · ·+ µsPsj︸ ︷︷ ︸
non-main= µ1P1j + · · ·+ µpPpj

=⇒ Akj = µ1
kP1j + · · ·+ µp

kPpj.

Then by corollary 2.19,

Nk =
n∑
i=1

[Akj]i = jTAkj =

p∑
i=1

µi
kjTPij =

p∑
i=1

µi
k‖Pij‖2,

and since ϑi
2n = ‖Pij‖2, the result follows.

3.2 The Main Polynomial
Recall that the characteristic polynomial φG(x) of a graph is given by

φG(x) = det(xI−A) =
s∏
i=1

(x− µi)m(µi),
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where µ1, . . . , µs are the distinct eigenvalues of G having multiplicity m(µi) for 1 6 i 6 s.

We introduce an analogous function which treats solely main eigenvalues.

Lemma 3.3. Let G be a graph. Then φG has integer coefficients.

Proof. Clearly each entry of xI−A is a polynomial with integral coefficients, being either

integers or terms of the form x− aii. Since det(xI−A) is simply a sum of products of

entries (by the Leibniz formula for determinant), it follows that det(xI−A) ∈ Z[x].

Definition 3.4. Let G be a graph. The main polynomial of G, denoted mG(x), is the

polynomial

mG(x) =

s∏
i=1

(x− µi),

where µ1, . . . , µs are the distinct main eigenvalues of G. �

Note that each main eigenvalue µi has multiplicity 1 in mG, regardless of its multiplicity

in φG.

A nice fact about mG is that its coefficients are always integers. Before we give a proof

of this fact, we will need the following theorem due to Cvetković, which provides us with

a generating function for the number of walks of length k in a graph G.[6]

Theorem 3.5 (Cvetković). Let G be a graph on n vertices with main eigenvalues

µ1, . . . , µp, let Nk be the number of walks of length k in G.

Then we have the following generating function for Nk:

∞∑
k=0

Nkt
k =

1

t

(
(−1)n

φḠ(− t+1
t )

φG(1
t )
− 1

)
.

Proof. If M is a non-singular n× n matrix, and J is an n× n matrix consisting entirely

of ones, it is straightforward to check that for any x,

det(M + xJ) = det(M)

1 + x

n∑
i=1

n∑
j=1

[M−1]ij

 . (3.1)

In particular, we have that Nk =
∑n

i=1

∑n
j=1[Ak]ij by theorem 2.18, and since for t
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within a suitable convergence radius,

∞∑
k=0

Aktk = (I− tA)−1,

we get
∞∑
k=0

Nkt
k =

∞∑
k=0

n∑
i=1

n∑
j=1

[Ak]ijt
k =

1

t

(
det(I− tA + tJ)

det(I− tA)
− 1

)
by (3.1) with M = I− tA and x = t. But since the adjacency matrix Ā of Ḡ is J− I−A

(proposition 1.4), this becomes

∞∑
k=0

Nkt
k =

1

t

(
det((t+ 1)I + tĀ)

det(I− tA)
− 1

)

=
1

t

(
(−1)n

det(− t+1
t I− Ā)

det(1
t I−A)

− 1

)
,

as required.

Now we prove that the main polynomial has integer coefficients. This result is also due

to Cvetoković.

Proposition 3.6 (Cvetković[6, 5]). Let G be a graph. Then mG ∈ Z[x].

Proof. Consider the function

ψ(u) = (−1)n
φḠ(−u− 1)

φG(u)
.

By theorem 3.5 and proposition 3.2,

ψ(u) = 1 +
1

u

∞∑
k=0

Nk(
1
u)k = 1 +

1

u

∞∑
k=0

n

(
p∑
i=1

ϑi
2µi

k

)
( 1
u)k

= 1 +
n

u

p∑
i=1

ϑi
2
∞∑
k=0

(µiu )k

= 1 +
n

u

p∑
i=1

ϑi
2 1

1− µi
u

(for | 1u | < R)

= 1 + n
n∑
i=1

ϑi
2

u− µi
=

p(u)

mG(u)
,
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where p(u) is the polynomial obtained by gathering terms on the lowest common de-

nominator mG(u). Thus ψ(u) has simple poles only at the main eigenvalues of G, so

φḠ(−u − 1) and φG(u) have common factors which cancel. But these common factors

must have rational coefficients (by the Euclidean division algorithm), and so must mG(u).

Moreover by theorem 2.23, mG(u) has integer coefficients.

Corollary 3.7. Let G be a graph. A generating function for the number of walks Nk in

G is

HG(t) =

∞∑
k=0

Nkt
k =

p∑
i=1

nϑi
2

1− µit

Proof. In the proof of proposition 3.6, simplification of ψ(u) yielded

1 +
1

u

∞∑
k=0

Nk(
1
u)k = 1 + n

n∑
i=1

ϑi
2

u− µi
.

Put t = 1
u and the result follows.

3.3 The Main Eigenspace
Let {b1, . . . , bm} be a basis for the m-dimensional eigenspace E(µ) of some main eigen-

value µ having multiplicity m in φG, such that the first one b1 is not orthogonal to j.

Now for 2 6 i 6 m, define

wi =
〈j, b1〉
n

bi −
〈j, bi〉
n

b1.

It is easy to check that 〈wi, j〉 = 0 for i > 2, and that B′µ = {w2, . . . ,wm, b1} is

still a basis for E(µ). Moreover, Gram–Schmidt orthogonalisation on B′µ produces an

orthonormal basis Bµ = {x2, . . . ,xm,x1} for E(µ), still having only one vector x1 not

orthogonal to j. Denote this vector by xµ.

Definition 3.8 (Main Eigenspace). Let G have main eigenvalues µ1, . . . , µp and let

mv(G) = {xµ1 , . . . ,xµp} denote the uniquely determined set of eigenvectors obtained by

the process described above, where each xµi ∈ E(µi) is not orthogonal to j.

Then the main eigenspace of G, denoted by Main(G), is the linear subspace span(mv(G))

of Rn. �

The eigenvectors in mv(G) are orthogonal and linearly independent, as they belong to
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distinct eigenvalues (proposition 2.17). Hence dim(Main(G)) = p. It follows also that

mv(G) can be extended to a basis for Rn.

Proposition 3.9 (Main Polynomial). Let G be a graph with adjacency matrix A. Then

mA(x) = φA�Main(G)(x).

Proof. Suppose (A � Main(G))x = µx. Then Ax = µx, and x ∈ Main(G), i.e., there

are αi such that

x = α1xµ1 + · · ·+ αpxµp .

But xµi are all eigenvectors corresponding to distinct eigenvalues (namely µi), so their

sum cannot be an eigenvector. In other words, all but one of the αi’s are zero. So x

must be a scalar multiple of one of the xµi ’s.

This result immediately gives an analogue to the Cayley-Hamilton theorem.

Corollary 3.10. Let G be a graph. Then mG(A) � Main(G) = O.

Proposition 3.11. Let G be a graph, and let mv(G) = {x1, . . . ,xp}. Then

j =
√
n

p∑
i=1

γixi,

where |γi| = ϑi, i.e., the main angles of G.

Proof. Recall, by the process of obtaining mv(G), that the orthonormal basis Bµi for

E(µi) contains only one vector xi with non-zero component along j, i.e., 〈j, b〉 = 0 for

all xi 6= b ∈ Bµi . Thus, since Rn =
⊕s

i=1 E(µi),

j =
∑

b∈
⋃s
i=1Bµi

〈j, b〉b =

p∑
i=1

〈j,xi〉xi. (3.2)

Moreover, if we project j onto E(µi) for some µi, the resulting projected vector Pi j =∑
b∈Bµi

〈j, b〉b = 〈j,xi〉xi, and since xi is unit, ‖Pi j‖ = |〈j,xi〉|. Thus by (3.2), the

result follows.

Together with corollary 3.10, this result gives us that mG(A)j = 0.
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3.4 The Walk Matrix
In corollary 2.19, the number of walks of length k from vertex i is show to be the ith

entry of the vector Akj. This motivates the following definition.

Definition 3.12. Let G be a graph with main eigenvalues µ1, . . . , µp. The k-walk matrix

is the n× k matrix

WG(k) =

 | | |
j Aj · · · Ak−1j

| | |

 .

In particular, the walk matrix WG of G is the p-walk matrix, i.e., WG = WG(p), where

p is the number of main eigenvalues of G. �

Theorem 3.13. The columns {j,Aj, . . . ,Ap−1j} of WG are a basis for Main(G).

Proof. Let mv(G) = {x1, . . . ,xp}. Since j =
∑p

j=1 βjxj by proposition 3.11 (where βj =

±
√
nϑj), we can write Aij =

∑p
j=1 βjA

ixj =
∑p

j=1 βjµj
ixj , so span{j,Aj, . . . ,Ap−1j} ⊆

Main(G).

Now we prove linear independence. Suppose there are αi such that

p−1∑
i=0

αiA
ij = 0 =⇒

p−1∑
i=0

αi

p∑
j=1

βjµj
ixj = 0 =⇒

p∑
j=1

(
βj

p−1∑
i=0

αiµj
i

)
xj = 0.

By the linear independence of mv(G), it follows that βj
∑p−1

i=0 αiµj
i = 0 for all 1 6 j 6 p.

Now since |βi| =
√
nϑi 6= 0 (otherwise µi would not be main), we have the equations

1 µ1 µ1
2 · · · µ1

p−1

1 µ2 µ2
2 · · · µ2

p−1

...
...

...
. . .

...

1 µp µp
2 · · · µp

p−1




α0

α1

...

αp−1

 = 0.

The left hand-side is the well-known Vandermonde matrix, whose determinant is non-

zero for distinct µi. Thus the only solution to this system is α0 = · · · = αp−1 = 0, as

required.

Thus {j,Aj, . . . ,Ap−1j} is a set of p = dim(Main(G)) linearly independent vectors in

Main(G), so they form a basis.

An immediate consequence is the following fact about walk matrices.
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Corollary 3.14. Let G be a graph, and let WG(k) be its k-walk matrix. Then

rank(WG(k)) = min{k, p}.

Moreover, if we have the walk matrix WG of a graph G, we can obtain WG(k) for k > p

using mA(G).

Proposition 3.15. Let G be a graph, and suppose its main polynomial is mG(x) =

xp − c0x
p−1 − · · · − cp−2x− cp−1. Then

Apj = c0j + c1Aj + · · ·+ cp−1A
p−1j.

Multiplying by Ai−p for i > p, one obtains a recurrence relation for the ith column of

WG(k) in terms of the previous p columns.

Proof. By the analogue of the Cayley-Hamilton theorem (corollary 3.10), we havemG(A)j =

0, which gives the result.

Corollary 3.16. Any two comain graphs with the same walk matrix have the same

k-walk matrix for any k > p.

Proof. Any two comain graphs have the same main polynomial, so proposition 3.15 gives

the result.

Counterexample 3.17. Unfortunately this is untrue for graphs which are not comain.

The two pairs (G5 622,G12 058) and (G5 626,G12 093) are counterexamples obtained using

Mathematica. They are the only counterexamples on 6 8 vertices having the same walk

matrix, but not the same k-walk matrix for k > p.

Refer to figure 3.1. The numbering of the graphs is in accordance with the list of non-

isomorphic graphs on 8 vertices on Brendan McKay’s graph data website.[13] �
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G5 622

Main Eigenvalues: 1−
√

65
2

, 1+
√

65
2

Walk Matrix 3-walk Matrix

1 4
1 4
1 4
1 4
1 5
1 5
1 5
1 5





1 4 20
1 4 20
1 4 20
1 4 20
1 5 21
1 5 21
1 5 21
1 5 21



G12 058

Main Eigenvalues: 3−
√
37

2
, 3+
√
37

2

Walk Matrix 3-walk Matrix

1 4
1 4
1 4
1 4
1 5
1 5
1 5
1 5





1 4 19
1 4 19
1 4 19
1 4 19
1 5 22
1 5 22
1 5 22
1 5 22



G5 626

Main Eigenvalues: 1 +
√
17, 1−

√
17

Walk Matrix 3-walk Matrix

1 4
1 4
1 4
1 4
1 6
1 6
1 6
1 6





1 4 24
1 4 24
1 4 24
1 4 24
1 6 28
1 6 28
1 6 28
1 6 28



G12 093

Main Eigenvalues: 2 +
√
10, 2−

√
10

Walk Matrix 3-walk Matrix

1 4
1 4
1 4
1 4
1 6
1 6
1 6
1 6





1 4 22
1 4 22
1 4 22
1 4 22
1 6 30
1 6 30
1 6 30
1 6 30


Figure 3.1: The only two counterexamples on 6 8 vertices, as described in
counterexample 3.17.
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CHAPTER 4

Canonical Double Covers

“You keep using that word, I do not think it

means what you think it means.”

Inigo Montoya
(The Princess Bride)

Most of the results presented here, as well as their proofs, are from [4].

The canonical double covering (or bipartite cover) of a graph G = (V,E) of order n,

denoted by CDC(G), is a graph G′ = (V ′, E′) of order 2n where V ′ = V × {0, 1}, and

E′ =
{
{(u, 0), (v, 1)}, {(u, 1), (v, 0)} : {u, v} ∈ E

}
. In other words, CDC(G) is obtained

by producing two copies of the vertex set, and replacing edges {u, v} in the original

graph by edges from the first copy to the second copy, and vice-versa (see figure 4.1 for

examples). Clearly, CDC(G) is always bipartite, with partite sets V × {0} and V × {1}.

If the vertices in V × {0} are given the first n labels, then it is not hard to see that the

adjacency matrix of CDC(G) is given by

A(CDC(G)) =

(
O A(G)

A(G) O

)
.

This is actually equivalent to the so-called direct product of G with K2, i.e., CDC(G) =

G × K2. The direct product was introduced by Whitehead and Russell in Principia

Mathematica, as an operation on binary relations.[15]
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1 2

3

C3

1 2

3

1 2

3

≡ 1

2 3

1

23

CDC(C3) ' C6

1 2

3 4 5

K2,3

1 2

3 4 5

1 2

3 4 5

≡

1 2

3 4 5

1 2

3 4 5

CDC(K2,3) ' 2K2,3

Figure 4.1: Canonical double coverings of C3 and K2,3, where vertices (v, 0)
are represented by circle nodes, and vertices (v, 1) by square nodes.
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4.1 Two Structural Results
The following first result utilises CDC’s to distinguish between bipartite and non-bipartite

connected graphs.

Proposition 4.1. Let G be a connected graph. Then G is bipartite if and only if CDC(G)

is disconnected. Moreover, if G is bipartite, then CDC(G) ' 2G.

Proof. Let G be bipartite, and let U1, U2 be the partite sets of G. Consider CDC(G),

and let Vi = {(v, 0) : v ∈ Ui} and V ′i = {(v, 1) : v ∈ Ui} for i = 1, 2 be the corresponding

partite sets and their copies in CDC(G). Since edges in G are only from U1 to U2,

then edges in CDC(G) are only either from V1 to V ′2 or V2 to V ′1 . Therefore CDC(G)

is disconnected with components being precisely the induced subgraphs on V1 ∪ V ′2 and

V2 ∪ V ′1 , both of which are isomorphic to G.

For the converse, suppose CDC(G) is connected. Identify v1 ≡ (v1, 0) and v′1 ≡ (v1, 1) as

notations for the two copies in CDC(G) of a vertex v1 in G. Since CDC(G) is connected,

there is a path (v1, v
′
2, v3, . . . , v

′
k−1, vk, v

′
1) joining v1 to v′1, where the vertices alternate

from one copy of the vertex set to another. But this corresponds to the odd cycle

(v1, v2, v3, . . . , vk, v1) in G. Hence by proposition 1.3, G is not bipartite.

Next we prove that the CDC operation is additive.

Proposition 4.2. Let G and H be graphs. Then

CDC(G + H) ' CDC(G) + CDC(H).

Proof. We have

A(G + H) =

 A(G) O

O A(H)

 ,

and so

A
(
CDC(G + H)

)
=


O

A(G) O

O A(H)

A(G) O
O

O A(H)


. (4.1)
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On the other hand,

A
(
CDC(G)

)
=

 O A(G)

A(G) O

 ,

and similarly for H, so that

A
(
CDC(G) + CDC(H)

)
=



O A(G)
O

A(G) O

O
O A(H)

A(H) O


. (4.2)

When considering equations (4.1) and (4.2), it is not hard to see that the permutation

matrix

P =


IG O O O

O O IH O

O IG O O

O O O IH

 ,

where IG and IH denotes the |V (G)| × |V (G)| and |V (H)| × |V (H)| identity matrices

respectively, gives the required relabelling:

PT A
(
CDC(G + H)

)
P = A

(
CDC(G) + CDC(H)

)
,

so that CDC(G + H) ' CDC(G) + CDC(H), as required.

Using induction, proposition 4.2 gives us that more generally

CDC(G1 + · · ·+ Gk) ' CDC(G1) + · · ·+ CDC(Gk),

and in particular when the graphs are all isomorphic, that CDC(nG) ' nCDC(G).

4.2 Graphs with the same CDC
If two graphs G, H have isomorphic canonical double coverings, that is, CDC(G) '
CDC(H), this does not determine H. Moreover, it does not even determine connectivity,

i.e., if G is connected, we do not necessarily have that H is connected. Indeed, since C6

is bipartite, we have CDC(C6) ' 2C6 by proposition 4.1. But then by proposition 4.2
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and figure 4.1, we have CDC(2K3) ' 2 CDC(K3) ' 2C6. Thus we have two graphs with

the same CDC, where one is connected, and the other is disconnected.

However, we do have the following.

Lemma 4.3. Let G and H be two graphs with CDC(G) ' CDC(H). Then G has no

isolated vertices if and only if H has no isolated vertices.

Proof. Indeed, if G has an isolated vertex, then G ' G′ + K1, so

CDC(G) ' CDC(G′ + K1) ' CDC(G′) + CDC(K1) ' CDC(G′) + K̄2

by proposition 4.2, and therefore CDC(H) ' CDC(G′) + K̄2. Thus the matrix

A(CDC(H)) =

(
O A(H)

A(H) O

)
,

has two whole columns of zeros, corresponding to the isolated vertices which make up

K̄2. But a column of zeros in the matrix above arises only when a whole column of zeros

is present in one of the non-zero blocks A(H), and since both non-zero blocks are equal,

then these two columns must be distributed equally among both A(H)’s (otherwise they

would be different). In other words, A(H) must have a column of zeros, and consequently

H has an isolated vertex. This argument is symmetric by interchanging G and H, so we

also have the converse.

This proposition is the key which allows us to prove the following theorem, which is one

of the main results of this chapter.

Theorem 4.4. Suppose G and H are two graphs with adjacency matrices AG and AH.

Then CDC(G) ' CDC(H) if and only if there exist two permutation matrices Q and R

such that

Q AG R = AH.

Proof. Suppose, without loss of generality, that the graphs G and H have no isolated

vertices (if they do, then by lemma 4.3, we could simply pair them off until we are left

with two graphs having no isolated vertices). If CDC(G) ' CDC(H), then there exists a
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permutation matrix P such that

PT

(
O AG

AG O

)
P =

(
O AH

AH O

)

=⇒

(
P11

T P21
T

P12
T P22

T

)(
O AG

AG O

)(
P11 P12

P21 P22

)
=

(
O AH

AH O

)
.

Multiplying out and comparing entries, we get that

P21
TAGP12 + P11

TAGP22 = AH (4.3)

P21
TAGP11 = P12

TAGP22 = O, (4.4)

where equation (4.4) follows since all matrices have non-negative entries.

Now observe that

(P11 + P21)TAG(P22 + P12) = AH

by equations (4.3) and (4.4). We claim that Q := (P11 + P21)T and R := P22 + P12

are permutation matrices. Suppose not. Being the sum of two submatrices of P, this

can only happen if a row (and column) are zero. But then AH will have a row of zeros,

corresponding to an isolated vertex in H, a contradiction.

Conversely, if QAGR = AH, then clearly

P :=

(
O Q

RT O

)

defines a permutation matrix, and it is easy to verify that

PT

(
O AG

AG O

)
P =

(
O AH

AH O

)
,

as required.

This weakened notion of graph isomorphism, where QAGR = AH and the permutation

matrices Q and R are not necessarily inverses, was first studied by Lauri et al. in [11].

They give a different proof of theorem 4.4 which uses a combinatorial argument. Such
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graphs are said to be two-fold isomorphic or TF-isomorphic, and we write

G
TF' H.

The pair of permutations (Q,R) is called the TF-isomorphism.

In [11], the authors discuss a pair of TF-isomorphic graphs on 7 vertices found by B.

Zelinka. In the appendix, we present an exhaustive list of 32 non-isomorphic graph pairs

which have the same CDC on up to 8 vertices. The Zelinka example corresponds to the

pair (G1164,H1032).

4.3 Establishing a Hierarchy
In this final section, we compare the strength of relationships and similarities between

graphs using the results of this chapter and the previous one to establish a hierarchy in

view of their main eigenvalues, main eigenspaces, main eigenvalues, walk matrices, and

CDCs.

That being TF-isomorphic and having isomorphic CDC’s are equivalent is established

by theorem 4.4. Next, we show that having isomorphic CDC’s implies having the same

k-walk matrix for any k, and in particular, the same walk matrix.

Theorem 4.5. Let G, H be two graphs with CDC(G) ' CDC(H), and let k be a natural

number. Then

WG(k) = WH(k)

for appropriate labelling of the vertices.

Proof. For a graph Γ, let AΓ = A(Γ) and CΓ = A(CDC(Γ)). Since CDC(G) ' CDC(H),

we can relabel the vertices of the graph H to get H′, so that CG = CH′ . Now for any

0 6 ` 6 k, we have that

CG
`j =

(
AG

`j

AG
`j

)
and CH′

`j =

(
AH′

`j

AH′
`j

)
,

but since CG = CH′ , it follows that AG
`j = AH′

`j for all 0 6 ` 6 k, so the columns of

WG(k) and WH(k) are equal.

Now we show that the converse is false.
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Same Main
Eigenspace

Related Walk
Matrices

Same Main
Eigenvectors

Same Walk
Matrix

Isomorphic
CDCs

Same Main
Eigenvalues

Two-fold
isomorphic

∧

4.13

3.8

4.5

4.4

4.15

4.9

4.12

/
4.14

/ 4.8 & 4.10

/ 4.6
/4.

6
&
4.
7

/

4.7

Figure 4.2: The hierarchy we present through our results. The arrow ⇒
means “implies”, and ; means ”does not imply”. The combination ⇔ is
short for⇒ and⇐, i.e., “implies and is implied by”, and similarly < is short
for ; and :, i.e., “does not imply and is not implied by”. The dashed lines
which merge at the ∧ node denote the conjunction of those two results. The
dotted lines denote a conjecture.
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1 2 3

4 5 6

7

Graph G

1 2 3

4

5

6

7

Graph H

Figure 4.3: Graphs G and H give a counterexample to the converse of
theorem 4.5, since they have the same walk matrix but different CDC’s.

1
2

3
4

5

6

7

Graph G

12

3

4 5

6 7

Graph H

Figure 4.4: Graphs G and H have the same main eigenvalues, but have
different walk matrices.

Counterexample 4.6. A counterexample of the converse of theorem 4.5 is given in fig-

ure 4.3. Indeed, those graphs have

WG =



1 3 9
1 3 10
1 3 10
1 3 10
1 3 10
1 3 9
1 4 12


= WH,

but CDC(G) 6' CDC(H).

Moreover, these two graphs have distinct main eigenvalues, which shows that same walk

matrix ; same main eigenvalues. �

Counterexample 4.7. The graphs G and H of figure 4.4 prove that the converse is also

false, i.e., that having the same main eigenvalues does not imply that the graphs have

the same walk matrix.
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Indeed, they both have main polynomial x(x3 − 2x2 − 4x+ 7), but their walk matrices

are

WG =



1 2 6 12
1 2 4 10
1 2 4 10
1 2 6 12
1 4 8 24
1 2 6 14
1 2 6 14

 , WH =



1 2 6 12
1 3 7 19
1 2 6 14
1 3 7 19
1 2 6 12
1 3 5 15
1 1 3 5

 .

It is also easy to check that their CDC’s are not isomorphic. �

Counterexample 4.8. Here we show that graphs having the same walk matrix do not

necessarily have the same main eigenvectors. Indeed, the two pairs of graphs in coun-

terexample 3.17 have the same walk matrix but different eigenvectors.

The span of their eigenvectors however, results in the same space. �

In fact:

Proposition 4.9. Let G and H be two graphs with the same walk matrix. Then

Main(G) = Main(H).

Proof. This follows immediately by theorem 3.13.

Thus the leap from eigenvectors to eigenspace makes a difference. In fact, it turns out

that if two graphs have the same main eigenvectors but different main eigenvalues, they

can never have the same walk matrix:

Proposition 4.10. Let G and H be two graphs with the same main eigenvectors but

different main eigenvalues. Then WG(k) 6= WH(k) for all k > 2.

Proof. Let G and H both have the same main eigenvectors mv(G) = mv(H) = {x1, . . . ,xp},
but different eigenvalues, µG

1 , . . . , µ
G
p , µH

1 , . . . , µ
H
p . By proposition 3.11, the first non-j

column of WG(k) is

AGj =
√
n

p∑
i=1

γiAGxi =
√
n

p∑
i=1

γiµ
G
i xi 6=

√
n

p∑
i=1

γiµ
H
i xi = AHj,

since the xi are linearly independent, as required.

Example 4.11. Proposition 4.10 establishes a non-implication. However, even though it

is proven in general, we must ensure that it is not vacuously true.
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1

2

3

4

5 6

78

Graph G

1 3

24

5 6

78

Graph H

Figure 4.5: Graphs G and H have the same main eigenvectors, but have
different walk matrices.

The graphs G and H in figure 4.5 both have main eigenvectors

(1
2(−1±

√
5), 1

2(−1±
√

5), 1
2(−1±

√
5), 1

2(−1±
√

5), 1, 1, 1, 1),

but their walk matrices are

WG =



1 2
1 2
1 2
1 2
1 4
1 4
1 4
1 4


and WH =



1 3
1 3
1 3
1 3
1 6
1 6
1 6
1 6


.

Indeed, their main eigenvalues are different. G has main eigenvalues 1±
√

5, whereas H

has main eigenvalues 3
2(1±

√
5). �

On the other hand, the same main eigenvalues and eigenvectors yield a unique k-walk

matrix for any k:

Theorem 4.12. Let k ∈ N, and suppose G and H are two comain graphs with the same

main eigenvectors. Then

WG(k) = WH(k).

Proof. Suppose G and H have main eigenvalues µ1, . . . , µp, and corresponding main eigen-

vectors x1 . . . ,xp. By proposition 3.11 we may express j as j =
∑p

i=1 βixi. Now the
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`th column of WG(k) is the vector A`−1
G j, so

A`−1
G j = A`−1

G

p∑
i=1

βixi =

p∑
i=1

βiA
`−1
G xi

=

p∑
i=1

βiµ
`−1
i xi =

p∑
i=1

βiA
`−1
H xi

= A`−1
H

p∑
i=1

βixi = A`−1
H j,

i.e., the `th column of WH(k).

Finally we elaborate on what is meant by “related walk matrices” in figure 4.2.

Proposition 4.13. Let G and H be two graphs. Then Main(G) = Main(H) if and only

if there is an invertible matrix Q such that WGQ = WH.

Proof. If Main(G) = Main(H), then the columns of WG and WH are both bases for the

same space by theorem 3.13. In particular, the columns of WH can be expressed as a

linear combination of those of WG. Indeed, if the ith column ci is αi1j +αi2AGj + · · ·+
αipAG

p−1j, then

WH =

 | | |
c1 c2 · · · cp

| | |

 =

 | | |
j AGj · · · AG

p−1j

| | |



α11 · · · α1p

...
. . .

...

αp1 · · · αpp


︸ ︷︷ ︸

=Q

.

Q must be invertible, since otherwise rank(WH) 6= p.

Now for the converse, in WH = WGQ the columns of WG are combined linearly by

Q so they are still members of Main(G). Since Q is invertible, none of the columns

of WG become linearly dependent, so they still span all of Main(G). Thus Main(H) =

Main(G).

Example 4.14. An example of graphs having related walk matrices is given in figure 4.6.

These correspond to graphs 31 and 37 from [5], and were pointed out by Jeremy Curmi.
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1

2

3

4

5

6

Graph G

1

2

3

4

5

6

Graph H

Figure 4.6: Graphs G and H have related walk matrices.

Indeed, we have

WG =


1 2
1 2
1 2
1 2
1 5
1 5

 =


1 3
1 3
1 3
1 3
1 4
1 4


(

1 −7
0 3

)
= WH

(
1 −7
0 3

)
= WHQ.

This same pair of graphs also serves as a counterexample to the following: having the

same main eigenspace does not necessarily mean they have the same main eigenvectors.

Indeed, the linearly independent main eigenvectors of G are (1, 1, 1, 1, 1
4(1±

√
33), 1

4(1±√
33)), whereas those of H are (1, 1, 1, 1, 1

4(−1±
√

33), 1
4(−1±

√
33)). �

We end with a conjecture which if true, would link CDC’s more intimately to their main

eigenvalues.

Conjecture 4.15. Let G and H be two graphs with CDC(G) ' CDC(H). Then G and

H have the same main eigenvalues.

Remark 4.16. Even though in the appendix we narrow the search space to consider only

graphs which are comain, the list is still exhaustive, because it was determined by an

algorithm that there are no counterexamples to conjecture 4.15 on 6 8 vertices. �
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APPENDIX

All Pairs of TF-Isomorphic Graphs
on 8 Vertices

“What’s the use of a book without pictures?”

Lewis Carroll
(Alice in Wonderland)

In this appendix, we give a complete list of all the TF-isomorphic graphs on 8 vertices,

that is, all pairs of graphs G, H with CDC(G) ' CDC(H) and G 6' H.

Since for any pair of TF-isomorphic graphs, we have

CDC(G + K1) ' CDC(H + K1)

by lemma 4.3, it is clear that this list contains all possible TF-isomorphic graphs on

n 6 8 vertices (those pairs with n < 8 will correspond to graphs with isolated vertices

added to both, such as the first pair in the table).

This list was constructed by running a simple C program which made use of the list of

non-isomorphic graphs on 8 vertices available on Brendan McKay’s website.[13] First, the

large search space of
(

12 346
2

)
= 76 205 685 pairs of non-isomorphic graphs was significantly

reduced to 1 595 pairs of graphs which are comain using the QR algorithm (this step is

justified by remark 4.16). This was the most intensive step computationally—it took an

ordinary Linux home desktop around 25 minutes.

Then another program simply found the CDC’s of each of the graphs which remained,

and these were compared pairwise to check for isomorphism. This took around 5 seconds.

The images of the graphs were generated by importing the output of the C program into

Mathematica. The vertices are coloured so that vertices which receive the same colour
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Appendix:
AllPairs

ofTF-Isom
orphic

Graphs
on

8
Vertices

have the same number of k-walks for any k. The graph numbers below correspond to the numbering given in McKay’s list

for non-isomorphic graphs on 8 vertices.

Graph Eigenvalues

(main eigenvalues denoted in bold)

Walk Matrix CDC(G) ' CDC(H)

447 −1, −1, 1, 1, −2, 0, 0, 2


1 2
1 2
1 2
1 0
1 0
1 2
1 2
1 2


958 −1, −1, 1, 1, −2, 0, 0, 2

1030 −1, −1, 0.31, 0.31, −1.48, −1.48, 2.17, 2.17


1 2 5
1 2 5
1 1 3
1 1 3
1 2 5
1 2 5
1 3 5
1 3 5


1162 −1, −1, 0.31, 0.31, −1.48, −1.48, 2.17, 2.17
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Graphs
on

8
Vertices

Graph Eigenvalues

(main eigenvalues denoted in bold)

Walk Matrix CDC(G) ' CDC(H)

1032 −1, −1, −1, 2, 0.47, 0, −1.81, 2.34


1 2 5 11
1 2 5 11
1 2 6 12
1 0 0 0
1 2 5 11
1 2 5 11
1 3 6 16
1 3 6 16

1164 −1, −1, −1, 2, 0.47, 0, −1.81, 2.34

1105 0, −1, −1, −1, 2, 0.64, −2.32, 2.68


1 2 6
1 2 6
1 2 8
1 2 8
1 2 6
1 2 6
1 4 8
1 4 8


1235 0, −1, −1, −1, 2, 0.64, −2.32, 2.68

3392 0, 0, −1, 1, 1
2

(
1−
√

17
)

, 1
2

(
1 +
√

17
)

,

1
2

(
−1−

√
17
)
, 1

2

(√
17− 1

) 

1 2
1 2
1 2
1 2
1 3
1 3
1 3
1 3


3494 0, 0, −1, 1, 1

2

(
1−
√

17
)

, 1
2

(
1 +
√

17
)

,

1
2

(
−1−

√
17
)
, 1

2

(√
17− 1

)
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Graphs
on

8
Vertices

Graph Eigenvalues

(main eigenvalues denoted in bold)

Walk Matrix CDC(G) ' CDC(H)

3482 −0.31, 1.48, −1, 1, −2.17, 0.14, −2.27, 3.13


1 3 11
1 2 7
1 3 11
1 2 7
1 3 9
1 3 9
1 4 11
1 4 11

3592 −0.31, 1.48, −1, 1, −2.17, 0.14, −2.27, 3.13

3413 0, −1, −1, 1, −2, 2, 1
2

(
1−
√

17
)

, 1
2

(
1 +
√

17
) 

1 2
1 2
1 2
1 2
1 3
1 3
1 3
1 3

3779 0, −1, −1, 1, −2, 2, 1
2

(
1−
√

17
)

, 1
2

(
1 +
√

17
)

1270 −1, −1, −1, −2, 1, 1, 1, 2


1 1
1 2
1 2
1 2
1 1
1 2
1 2
1 2


5629 −1, −1, −1, −2, 1, 1, 1, 2
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Graphs
on

8
Vertices

Graph Eigenvalues

(main eigenvalues denoted in bold)

Walk Matrix CDC(G) ' CDC(H)

5684 −1, −1, −1, −1, 2, 1, −2, 3


1 3 11
1 2 6
1 2 6
1 3 11
1 2 6
1 2 6
1 4 10
1 4 10

5718 −1, −1, −1, −1, 2, 1, −2, 3

3887 −1, 1, 1, −2, −2, 0, 0, 3


1 2
1 3
1 3
1 0
1 3
1 3
1 2
1 4


5753 −1, 1, 1, −2, −2, 0, 0, 3

3899 −1, −1, 1, 1, −2, 0, 1−
√

7, 1 +
√

7


1 3 12
1 3 12
1 3 12
1 0 0
1 3 12
1 3 12
1 3 12
1 6 18


5755 −1, −1, 1, 1, −2, 0, 1−

√
7, 1 +

√
7
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Graphs
on

8
Vertices

Graph Eigenvalues

(main eigenvalues denoted in bold)

Walk Matrix CDC(G) ' CDC(H)

3886 −1, 1, 1, 1, −2, −2, 1−
√

2, 1 +
√

2


1 2
1 2
1 3
1 1
1 3
1 2
1 2
1 3


5756 −1, 1, 1, 1, −2, −2, 1−

√
2, 1 +

√
2

3888 −1, 1, 1, −2, −0.49, 0.60, −2.20, 3.09


1 2 6 20
1 3 10 29
1 3 10 29
1 1 5 13
1 3 10 29
1 3 10 29
1 2 6 20
1 5 13 45


5759 −1, 1, 1, −2, −0.49, 0.60, −2.20, 3.09
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Graphs
on

8
Vertices

Graph Eigenvalues

(main eigenvalues denoted in bold)

Walk Matrix CDC(G) ' CDC(H)

3903 −1, −1, 1, 1, 2−
√

3, 2 +
√

3, −2, −2


1 3 13
1 3 13
1 3 13
1 1 7
1 3 13
1 3 13
1 3 13
1 7 19


5761 −1, −1, 1, 1, 2−

√
3, 2 +

√
3, −2, −2

6471 −1, −1, 2, 0.55, 0, −1.48, −2.29, 3.21


1 3 10 32 102
1 3 10 32 102
1 2 8 22 78
1 2 7 21 71
1 2 7 21 71
1 4 11 39 117
1 4 11 39 117
1 4 14 42 142


7012 −1, −1, 2, 0.55, 0, −1.48, −2.29, 3.21

6479 −1−
√

2, −1, −1, 2, 0.53, −1.34, 2.81,
√

2− 1


1 3 8
1 3 8
1 3 9
1 2 6
1 2 6
1 3 8
1 3 8
1 3 9

7013 −1−
√

2, −1, −1, 2, 0.53, −1.34, 2.81,
√

2− 1
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Graphs
on

8
Vertices

Graph Eigenvalues

(main eigenvalues denoted in bold)

Walk Matrix CDC(G) ' CDC(H)

6481 −1, −1, −2, 2, −0.28, 0.56, −1.79, 3.52


1 3 11 37
1 3 11 37
1 3 13 43
1 2 7 24
1 2 7 24
1 4 13 48
1 4 13 48
1 5 17 61


7015 −1, −1, −2, 2, −0.28, 0.56, −1.79, 3.52

6476 −1, −1, −1, −1, 2, 1.15, −2.25, 3.10


1 3 10
1 3 10
1 2 6
1 3 10
1 3 10
1 3 8
1 3 8
1 4 12


7026 −1, −1, −1, −1, 2, 1.15, −2.25, 3.10

6478 −1, −1, −1, −2, 2, 0.71, −1.49, 3.78


1 3 13
1 3 13
1 2 8
1 3 13
1 3 13
1 4 14
1 4 14
1 6 20


7028 −1, −1, −1, −2, 2, 0.71, −1.49, 3.78
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Graphs
on

8
Vertices

Graph Eigenvalues

(main eigenvalues denoted in bold)

Walk Matrix CDC(G) ' CDC(H)

6486 −1, −1, −1, 2, −0.34, 0.66, −2.68, 3.36


1 3 11 35
1 3 11 35
1 3 11 33
1 3 11 35
1 3 11 35
1 3 9 33
1 3 9 33
1 5 15 55

7035 −1, −1, −1, 2, −0.34, 0.66, −2.68, 3.36

6488 −1, −1, −1, 2, 0.48, −1.53, −2, 4.05


1 3 14 53
1 3 14 53
1 3 15 55
1 3 14 53
1 3 14 53
1 4 16 66
1 4 16 66
1 7 23 103


7037 −1, −1, −1, 2, 0.48, −1.53, −2, 4.05

10840 1, 1, 1, −2, −2, −2, 1
2

(
3−
√

17
)

, 1
2

(
3 +
√

17
) 

1 3
1 3
1 4
1 4
1 3
1 3
1 4
1 4


10851 1, 1, 1, −2, −2, −2, 1

2

(
3−
√

17
)

, 1
2

(
3 +
√

17
)
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Graphs
on

8
Vertices

Graph Eigenvalues

(main eigenvalues denoted in bold)

Walk Matrix CDC(G) ' CDC(H)

5358 −1, −1, −1, 1, 1, 1, −3, 3


1
1
1
1
1
1
1
1


11716 −1, −1, −1, 1, 1, 1, −3, 3

10867 0, −1, 1, −2, 1
2

(
3−
√

17
)

, 1
2

(
3 +
√

17
)

,

1
2

(
−1−

√
17
)
, 1

2

(√
17− 1

) 

1 3
1 3
1 4
1 4
1 3
1 3
1 4
1 4


11731 0, −1, 1, −2, 1

2

(
3−
√

17
)

, 1
2

(
3 +
√

17
)

,

1
2

(
−1−

√
17
)
, 1

2

(√
17− 1

)
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Graphs
on

8
Vertices

Graph Eigenvalues

(main eigenvalues denoted in bold)

Walk Matrix CDC(G) ' CDC(H)

10841 −1−
√

2, 1, 1, −2, −0.32, −1.60, 3.92,
√

2− 1


1 3 12
1 3 12
1 4 16
1 4 16
1 3 12
1 3 12
1 5 19
1 5 19


11742 −1−

√
2, 1, 1, −2, −0.32, −1.60, 3.92,

√
2− 1

10838 −1, 1, 1, −2, 0, 0, 1
2

(
1−
√

41
)

, 1
2

(
1 +
√

41
) 

1 2 8
1 4 14
1 4 14
1 4 14
1 4 14
1 2 8
1 4 16
1 4 16


11747 −1, 1, 1, −2, 0, 0, 1

2

(
1−
√

41
)

, 1
2

(
1 +
√

41
)

10839 −1, −1, 1, 1, −2, 0.21, −2.30, 4.08


1 2 8
1 4 16
1 4 16
1 4 16
1 4 16
1 2 8
1 5 21
1 5 21

11748 −1, −1, 1, 1, −2, 0.21, −2.30, 4.08
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Graphs
on

8
Vertices

Graph Eigenvalues

(main eigenvalues denoted in bold)

Walk Matrix CDC(G) ' CDC(H)

10849 −1, 1, 1, −2, 0.60, −1.35, −2.39, 4.14


1 3 14 56
1 4 17 69
1 4 17 69
1 4 17 69
1 4 17 69
1 3 14 56
1 4 16 68
1 6 22 96


11751 −1, 1, 1, −2, 0.60, −1.35, −2.39, 4.14

10850 −1, 1, 1, −2, −2, 0.14, −1.64, 4.50


1 3 15
1 4 19
1 4 19
1 4 19
1 4 19
1 3 15
1 5 23
1 7 27


11752 −1, 1, 1, −2, −2, 0.14, −1.64, 4.50

10887 −0.31, 1.48, −1, 1, −2.17, −0.72, −2.38, 4.10


1 3 13
1 4 17
1 4 17
1 4 17
1 4 17
1 3 13
1 5 19
1 5 19

11755 −0.31, 1.48, −1, 1, −2.17, −0.72, −2.38, 4.10
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Graphs
on

8
Vertices

Graph Eigenvalues

(main eigenvalues denoted in bold)

Walk Matrix CDC(G) ' CDC(H)

10897 0, −1, −1, 1, 1, −2, 1−
√

13, 1 +
√

13


1 4
1 4
1 4
1 4
1 4
1 4
1 6
1 6


11761 0, −1, −1, 1, 1, −2, 1−

√
13, 1 +

√
13

10898 −1, −1, −1, 1, 1, −2, −2, 5


1 4
1 4
1 4
1 4
1 4
1 4
1 7
1 7


11762 −1, −1, −1, 1, 1, −2, −2, 5

59



Bibliography

[1] S. Axler. Linear Algebra Done Right. Springer Verlag, 3rd edition, 2015.

[2] N. Biggs. Spectra of Graphs. Springer Verlag, 2nd edition, 2016.

[3] A. E. Brouwer and W. H. Haemers. Spectra of Graphs. Springer Verlag, 1st edition,

2012.

[4] L. Collins and I. Sciriha. On the walks and canonical double coverings of graphs

with the same main eigenspace. arXiv:1906.05790 [math.CO], 2019.
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Index

f � X, see domain restriction

k-cycle, see cycle

n-cycle, see cycle

adjacency matrix, 7

bipartite, 7

bipartite double covering, see canonical dou-

ble covering

Birkhoff–von Neumann, 12

canonical double covering, 34

cardinality, 5

Cartesian product, see sets

CDC, see canonical double covering

comain, 25

complement, 8

complete graph, 8

component, 7

connected graph, 7

convex, 12

combination, 12

cospectral, 8

cycle, 7, 8

degree, 6

disconnected graph, 7

domain restriction, 5

even cycle, see cycle

functions, 5

Gauss’ lemma, 24

graph

complement, see complement

definition, 5

simple graph, 5

sum, see sum

union, see sum

Handshaking lemma, 8

Hermitian operator, 15

hiearchy, 40

induced subgraph, see subgraph

inner product, 15

inner product space, see inner product

isolated vertex, 8

isomorphic, see isomorphism

isomorphism, 6

main

angles, 25

eigenspace, 29

eigenvalue, 25

polynomial, 27

matrices, 5

62



MAT3999 Index

natural numbers, 5

neighbour, 6

number of walks, 22

generating function, 27, 29

odd cycle, see cycle

orthogonal projection, 15

partite set, see bipartite

permutation, see permutation matrix

permutation matrix, 11

Perron–Frobenius, 26

polynomial, 23

content, 23

primitive, 23

power set, 5

projection, see orthogonal projection

restriction, see domain restriction

sets, 5

Cartesian product, 5

k-subsets, 5

spectral theorem, 18

subgraph, 7

sum, 8

TF-isomorphism, 40

union, see sum

vertex

degree, 6

neighbour, see neighbour

walk, 6

k-walk, 6

walk matrix, 31

k-walk matrix, 31
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