
MODULE 5: ALGORITHMS
M.Sc. in Artificial Intelligence

IDEA Academy, Malta

Luke Collins∗

luke.collins.mt

3 Nov 2022

Contents

0 Introduction 3
0.1 What is an Algorithm? . . . . . . . . . . . . . . . . . . . . . . . . . 3Lecture 1

22 Feb 2022 0.2 Not all Algorithms are Created Equal . . . . . . . . . . . . . . . . . . 4
0.3 How to Think About this Course . . . . . . . . . . . . . . . . . . . . 5

1 Complexity 6
1.1 Asymptotic Notation . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2 Induction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 Recursion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Sorting and Searching 22Lecture 2
1 Mar 2022 2.1 Insertion and Selection Sort . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Divide and Conquer: Merge Sort . . . . . . . . . . . . . . . . . . . . 24
2.3 Other Sorting Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4 Searching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Graph Algorithms 35
3.1 PageRank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36Lecture 3

8 Mar 2022 3.2 Depth-First Search . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3 Breadth-First Search . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4 Greedy Algorithms: Minimum Spanning Trees . . . . . . . . . . . . . 45

∗Department of Mathematics, Faculty of Science, University of Malta.

1

https://luke.collins.mt


MODULE 5 LECTURE NOTES, 2021–2022 LUKE COLLINS

4 Biological Algorithms 48Lecture 4
15 Mar 2022 4.1 Genetic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 Ant Colony Optimisation . . . . . . . . . . . . . . . . . . . . . . . . 55

5 Path Finding and Network Flow 60Lecture 5
22 Mar 2022 5.1 Game Trees and Minimax . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 A* Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.3 Network Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6 Complexity Classes 74Lecture 6
29 Mar 2022 6.1 P=NP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.2 Turing Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7 Conclusion 82

References 85

2



MODULE 5 LECTURE NOTES, 2021–2022 LUKE COLLINS

0. Introduction

My name is Luke Collins, and I will be teaching you this course on algorithms. The
goal of this course is to endow you with the skills to distinguish between good

and bad algorithms, to familiarise you with some classical algorithms on sorting and
searching, graphs, path-finding, and network flow, and to teach you some standard
techniques in algorithm design. The official reference book for the course is [1].

Just as with your previous modules, there will be a small discussion component in the
middle of the course, and a programming assignment at the end, where you will apply
what you’ve learned.

If you have any questions about the course, don’t hesitate to contact me via email on
luke@collins.mt, or talk to me after one of my lectures.

What is an Algorithm?

An algorithm is a precisely defined computational procedure that takes a numberLecture 1
22 Feb 2022 of inputs (possibly zero), and produces some desired output. It can be thought

of as a function (in the mathematical sense) mapping inputs from some input space
to the corresponding outputs in some output space.

Typically, algorithms are devised to solve a computational problem. A classical example
is the problem of sorting a given list of integers x1, . . . , xn into non-decreasing (⩽)
order—this is an example with which we shall become intimately familiar. Another
example is the well-known Travelling Salesman Problem (TSP): given a list of cities,
together with the distances between them, the goal is to determine the optimal route
one should take in order to visit each city precisely once.

Figure 1: An instance of the TSP in France, and its solution

At this point, you might be thinking: “what is the difference between an algorithm
and a computer program?”, and this is a legitimate question. A computer program is
usually written in a specific language (such as C or Python), whereas an algorithm is
something which is language agnostic: it refers to the sequence of steps we perform—
the idea behind the code.
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In fact, we often write algorithms using pseudocode, which is something resembling a
programming language, but with no strict syntax.

1: int main(){

2: unsigned x=0;

3: for(;x<10;)

4: x++;

5: return 0;

6: }

1: x=0

2: while x<10:

3: x+=1

1: x ← 0
2: while x < 10 do
3: x = x + 1

Figure 2: Two programs, one written in C, the other in Python, which carry out the
logic in the pseudocode on the right

Not all Algorithms are Created Equal

The two problems we mentioned earlier are wildly different from each other: the
former is quite well-understood, and there are many “good” algorithms which can

sort a list of integers. The latter, on the other hand, is a very difficult problem for
which no “good” algorithm exists (yet).

Shortly, we will give a more precise definition of what makes an algorithm “good”, but
the essential idea is that an algorithm is good if it isn’t too slow. More precisely, if the
“size” of the input gets large, then the time the algorithm takes to solve the problem
shouldn’t scale too horribly. Now again, since different problems involve different kinds
of inputs, the term “size of the input” takes on different meanings, depending on the
algorithm in question; in the case of sorting, we usually interpret it to mean how long
the list of integers is, whereas in the TSP, we typically use the number of cities.

N (Length of List) 2 10 100 1000 106 109

Time 0.01 ns 0.01 ns 10 ns 0.0002 s 0.4 s 10 minutes

N (Cities) 2 10 12 20 30 40 50

Time 0.01 ns 3 662 ns 0.02 s 15 s 9.6 h 728 days 3192 years

Table 1: Time taken by Merge Sort and Held–Karp algorithm (TSP)

Table 1 gives some running times for merge sort, a sorting algorithm we will cover, as
well as the Held–Karp algorithm for TSP, which is essentially the best algorithm we
currently have for the problem.

The reason they differ so drastically is because we can show, using mathematical
techniques, that the time taken by merge sort is roughly c1N logN, where c1 is a fixed
constant, and N is the length of the list. By contrast, the time taken by the Held–Karp
algorithm is around c2N2 2N , where N is the number of cities.
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In this course, we will learn how to obtain estimates like these for the runtime in terms
of N. This is called finding the time complexity of the algorithm.

You should have a good understanding of how different mathematical functions grow
as their input grows—there is what is typically referred to as an asymptotic hierarchy :

logN Î N0.1 Î
√
N Î N Î N logN Î N

√
N Î N2 Î N3 Î 2N Î 3N Î N!

The notation Î here will be defined precisely later on, but you can read it as “grows
more slowly than”. Obviously this is not a complete list of possible functions in this
hierarchy: you should, for example, understand where N2/3, N2 logN and N3+7 logN
go if we were to insert them above.

The following exercise should help your understanding of growth of functions.

Exercise 0.1. For each of the functions f (N) in the following table, determine
how large N can be so that an algorithm taking f (N) microseconds doesn’t
exceed the time stipulated in the column.

1
second

1
minute

1
hour

1
day

1
month

1
year

1
century

logN
√
N

N

N logN

N2

N3

2N

N!

[Assume log = log2.]

How to Think About this Course

The best analogy for a course on algorithms is that of a cooking class—it doesn’t
really matter what recipes you end up preparing, the important things you take

away from the course are the techniques and ability to tell a good algorithm (or recipe)
from a bad one.

Having said that, just as with cooking, there are some classic algorithms everyone who
has taken such a course ought to know. (Just as everyone who has taken a cooking
class ought to know how to make scrambled eggs). An algorithm is quite analogous
to a recipe: both are procedures defined to transform a set of inputs (eggs, flour, etc.)
into an output (a cake) by following a sequence of steps (the recipe).
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1. Complexity

When we determine the time complexity of an algorithm, we mainly want to de-
termine the number of “steps” that the algorithm will perform, where a step

is usually understood to mean a basic statement (such as a variable declaration, print
statement or simple expression evaluation) which should take the computer the same
amount of time to execute.

Thus our unit of time in terms of complexity calculations is “steps” rather than some-
thing like seconds, since it is reasonable to assume that the actual time taken (in
seconds) is proportional to the number of steps; and as we’ve also mentioned, the
important thing isn’t really the time taken, but more how the algorithm’s complexity
scales with respect to the size of the input (i.e., we care about what the running time
is proportional to, rather than the explicit proportionality constant).

Example 1.1. Take the following trivial example.
1: x ← 3
2: for i = 1, . . . , N do
3: print(i)
4: if i = x then
5: print(“ i and x are the same”)

The time complexity of this algorithm depends on N, so it’s going to be some function
T (N), of N. Let’s count the steps:

• Line 1 simply assigns 3 to x , this costs 1 step.

• Line 2 initialises the variable i , which costs 1 step. Implicitly, the loop construct
will increment i each time the block 3–5 is executed, so that adds another N−1
steps. In addition to this, the block 3–5 will itself be run N times; but we need
to determine how costly that block is (the block isn’t a “basic” statement, we
need to determine its complexity).

– Line 3 simply prints the current value of i , this costs 1 step.

– Line 4 checks whether i and x are the same, essentially evaluating the
boolean expression i==x, this costs a single step.

– Line 5 is technically also a block made up of a single print statement, but
this is only run in the case that i is the same as x . Since x is just 3, this
costs 1 step in the iteration with i = 3, and 0 steps in all the other N − 1
iterations.

Thus the total number of steps for this algorithm is

T (N) = 1 + 1 + (N − 1) + N(1 + 1) + 1(1) + (N − 1)(0) = 3N + 2.

Since this is a linear expression, we call this a linear-time algorithm.
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Example 1.2 (Matrix Multiplication). Recall that given two N ×N matrices A and B,
the entry in the i jth column of their product AB is

AB[i , j ] =

N∑
k=1

A[i , k ]B[k, j ],

where the notation X[i , j ] denotes the i jth entry of the matrix X.

In pseudocode, the algorithm is the following.
Input: two N × N arrays A and B

1: AB← N × N array full of zeros
2: for i = 1, . . . , N do
3: for j = 1, . . . , N do
4: for k = 1, . . . , N do
5: AB[i , j ]← AB[i , j ] + A[i , k ]× B[k, j ]

To determine the number of steps, the cost of line 1 is debatable: even though it seems
like a simple initialisation, in memory, initialising an n × n array of zeros is equivalent
to initialising N2 variables and assigning them the value zero, so we will consider line
1 to cost N2 steps.

Since there is no conditional logic on the loops in line 2–4, it is clear that each loop
will initialise its counter, and increment it every iteration. Line 5 itself is just a simple
assignment, we can consider it to cost 1 step. Thus the total number of steps is

T (N) = N2 + 1 + (N − 1) + N(1 + (N − 1) + N(1 + (N − 1) + 1))
= N3 + 3N2 + N,

so this algorithm has cubic time complexity.

Exercise 1.3. Show that the algorithm below performs 12(N
2 + 4N + 4) steps

if N is even, and 12(N
2 + 3N + 4) if N is odd.

1: x ← 0
2: for i = 1, . . . , N do
3: if i is even then
4: for j = 1, . . . , N do
5: x ← x + j
6: else
7: x ← x + i
8: print(x)

In general, it can be quite tedious to be very precise about the exact number of steps.
The main thing we care about is the largest term, since when N is big, this is what
dominates the expression.
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Asymptotic Notation
Suppose we compute the number of steps of an algorithm to be

T (N) = 2N3 − 7N2 + N − 17.

What we care about in terms of time complexity is the most significant term, since
when N is large, that dominates all the other terms (so they are less important). So
in this case, the most important term is 2N3.

Moreover, the constant 2 isn’t that important either, since we mainly care about the
rate of growth—we’d describe an algorithm with this runtime as an algorithm with
“cubic” (N3) time complexity.

We borrow the following notation from mathematics:

Definition 1.4 (Big-Oh). Let f and g be two positive-valued functions. If there exists
a constant C > 0 such that, eventually,1

f (N) ⩽ C · g(N)

for all N, then we say that f (N) is asymptotically dominated by g(N), denoted by
f (N) Î g(N) or f (N) = O(g(N)); the latter is typically read “f is big-Oh of g”.2

Example 1.5. Let’s mathematically prove that T (N) = 2N3−7N2+N−17 is O(N3).
Indeed,

T (N) = 2N3 − 7N2 + N − 17
⩽ 2N3 + N3 (if N ⩾ 1)

= 3N3,

so we take C = 3 in the definition, and N ⩾ 1 (for the “eventually” part).

Examples 1.6. Here are some more examples of the notation.

• N2 + 3N + 2 = O(N2)

• 5N2 = O(N2)

• 5N2 = O(N3)

• N2 = O(N2 + N + 1)

• 10 Î 1

•
√
N Î N0.6

• A non-example: N3 − 5 = O(N2) is not true, nor is N2 Î N logN.
1i.e., for all N larger than some fixed constant.
2The sign “=” is not meant to express “is equal to” in its normal mathematical sense, but rather a

more colloquial “is”.

8



MODULE 5 LECTURE NOTES, 2021–2022 LUKE COLLINS

Two related notations are big-Ω and big-Θ.

Definitions 1.7 (big-Ω and big-Θ). Let f and g be positive valued functions. Then:

(i) f asymptotically dominates g, denoted f (N) Ï g(N) or

f (N) = Ω(g(N))

(read “f is big-Omega of g”), if g(N) = O(f (N)).

(ii) f and g are asymptotically equivalent, written f (N) ≍ g(N) or

f (N) = Θ(g(N))

(read “f is big-Theta of g”) if both f (N) = O(g(N)) and f (N) = Ω(g(N)).

Example 1.8. N2 +
√
N = O(N3), N2 +

√
N = Ω(N) and N2 +

√
N = Θ(N2).

Using this notation, we can say that our matrix multiplication algorithm ran in Θ(N3)
time, and that the algorithm from example 1.1 has time complexity O(N).

Example 1.9. An algorithm with time complexity Θ(N logN) time takes 1 second
to finish execution when N = 1000. How long does it take, approximately, when
N = 1000 000?

Since the algorithm isΘ(N logN), then the running time is approximately c ·N logN for
some constant c . Since when N = 1000, this is 1 second, then 1 = c ·1 000 log(1 000),
which means that c = 1

1 000 log(1 000) , so in general an approximation for the running
time is

1

1 000 log(1 000)
N logN seconds,

and this is increasingly accurate as N gets large.

Thus when N = 1000 000, the time taken is approximately

1

1 000 log(1 000)
· 1 000 000 log(1 000 000) = 2 000 seconds,

or around 33 minutes.

Exercise 1.10. 1. Prove that logN is O(Nϵ) for any ϵ > 0.

[Hint: logN = 1
ϵ

∫ nϵ
1
dt
t <

1
ϵ

∫ nϵ
1 dt.]

2. Prove that f (N) = N2 + N
√
N + logN is Θ(N2).

3. It takes 15 seconds to solve the TSP on 20 cities using the Held–Karp
algorithm, which is Θ(N22N). Approximately how long will it take to do
50 cities? Express your answer in years.

9
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Induction

Suppose an algorithm makes use of two nested loops, and suppose the inner loop
uses the counter of the outer loop. Here is an example:

1: x ← 0
2: for i = 1, . . . , N do
3: for j = i , . . . , N do
4: x ← x + 1
5: print(x)

Notice that on line 3, the for-loop starts from i , which varies with the outer loop. In this
case, the outer loop clearly runs N times, but the number of times the inner loop runs
depends on the outer loop. If we ignore the implicit assignment and increment steps
in the for-loops, counting solely the number of times line 4 ends up being executed,
we see that it runs

N∑
i=1

N∑
j=i

1 = N + (N − 1) + (N − 2) + · · ·+ 2 + 1

times. This is the well known Nth triangular number, and has a nice closed form,
namely,

N(N + 1)

2
,

i.e., 12N
2 + 1

2N, which means the complexity is still Θ(N2). In other words, even
though it seems like we are executing line 4 fewer times, in terms of complexity, it’s
still just as bad as when j starts from 1 each time (since this is obviously Θ(N2)).

Why is this formula for 1+ · · ·+N true? We can prove it (and many other important
formulae) using the technique of induction.

Probably, all mathematical proofs you have encountered so far have been deductive,
where one step is deduced from the other (Step 1 ⇒ Step 2 ⇒ · · · ⇒ Step n). A
relatively newer concept (for which we should thank Pascal) is mathematical proof
by induction. Induction is a powerful tool we use to prove statements for all natural
numbers (1, 2, 3, . . . ), or for any discrete structure in general.

The idea is based on what we often call the domino effect. Consider an (infinite)
line of dominoes. We wish to prove that all the dominoes will fall, and we do this as
follows:

(1) Prove that the first one will fall.

(2) Prove that if the (N − 1)st domino falls, then the Nth domino falls also.

Suppose we manage to prove both (1) and (2). By (1), we know that the first domino
falls. But then by (2), the second one falls also. But now we can use (2) again to

10
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conclude that the third domino falls. And the fourth. And the fifth. This can continue
indefinitely, thus proving that all the dominoes fall.

Let us transfer this to a mathematical context. Suppose we wish to prove that a
statement SN is true for every natural number N. We can do this by:

(1) Proving that SN is true for the case N = 1, i.e., proving that S1 is true. This is
called the base case.

(2) Assume that SN−1 is true (we call this the inductive hypothesis). Based on
this assumption, prove that SN is true. This is called the inductive step.

(2) allows us to transform the proof of the case when N = 1 into a proof for when
N = 2. We can then use (2) again to establish that the result is true when N = 3, and
so on. I like to think of (2) as a “machine” which transforms a proof of the statement
for a specific case, into a proof of the statement for the next case.

Example 1.11. Let’s prove the formula 1 + · · ·+ N = 1
2N(N + 1).

Base case: For N = 1, we have 1 = 1
2(1 + 1), so the statement holds.

Now, assume the result holds for N − 1, i.e., that

1 + 2 + · · ·+ (N − 1) =
N − 1
2
((N − 1) + 1) = 1

2N(N − 1).

Can we use this to show that it is true for N?

1 + 2 + · · ·+ (N − 1) + N =
N

2
(N − 1) + N (by induction hypothesis)

=
N

2
(N − 1 + 2)

=
N

2
(N + 1)

i.e., the statement holds for N. This completes the proof.

Example 1.12. We show that the number 4N + 2 is always divisible by 3 for every N.

For the base case, when N = 1 we have 41 + 2 = 6 = 3(2), so the statement holds.

Next for the inductive step, we have

4N + 2 = 4(4N−1) + 2

= 4(4N−1) + 4− 2
= 4(4N−1 + 1)− 2
= 4(4N−1 + 2− 1)− 2
= 4(3a − 1)− 2 (by induction hypothesis)

11
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= 12a − 4− 2
= 12a − 6
= 3(4a − 2)
= 3b where b = (4a − 2), which is an integer.

Example 1.13. How about an example with matrices. We prove that if

A =

(
3 1

0 2

)
,

then the matrix power AN is given by

AN =

(
3N 3N − 2N
0 2N

)
.

For the base case, we have

A0 =

(
1 0

0 1

)
=

(
30 30 − 20
0 20

)
,

so the statement holds when N = 0. Now

AN = AN−1A

=

(
3N−1 3N−1 − 2N−1
0 2N−1

)(
3 1

0 2

)
(by the IH)

=

(
3N−1(3) + 0 3N−1 + 2(3N−1 − 2N−1)

0 2N−1(2)

)

=

(
3N 3N−1 + 2(3N−1)− 2N
0 2N

)

=

(
3N 3N−1(1 + 2)− 2N
0 2N

)
=

(
3N 3N − 2N
0 2N

)
,

as required.

Remark 1.14. The general strategy of proof by induction is to try and “break down”
the objects we are working with in the N case into the N−1 case, plus something else
which elevates it to the N case (e.g., the matrix AN into AN−1A1). This allows one
to apply the inductive hypothesis.

Thus, one deduces that induction would not be very useful when it is very difficult,
or impossible, to relate the case of N − 1 to that of N. When results are about the
natural numbers themselves, often one can use induction, because we have an explicit
way to relate N − 1 and N (namely N = (N − 1) + 1).

12
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Exercise 1.15. 1. Prove that the sum of the first N odd numbers is N2.

2. Show that (1 + 2 + · · ·+ N)2 = 13 + 23 + · · ·+ N3.

3. Prove that 5N can always be expressed as a sum of two squares.

Recursion

A very important result, which goes hand-in-hand with induction, is the idea of
definition by recursion. This idea is essential in mathematics and computer

science, the idea of a function “using itself” in a definition.

Let us motivate this with an example, before we state the theorem. The factorial of
a natural number N, written N!, is the product of all numbers from 1 to N, i.e.,

N! = N · (N − 1) · · · 2 · 1.

An alternative way to define this is the following: suppose we want to find 5!, but we
already know what 4! is. How can we use this information? Well if we already know
what 4! is, we can just multiply this by 5 and we get 5!—in general, we have that
N! = N · (N−1)!. We could use this to define factorial differently—let fac(N) denote
our “newly” defined factorial.

If we define fac(N) = N · fac(N − 1), this almost works. Indeed, if we try to evaluate
5! this way, we do

fac(5) = 5 · fac(4)
= 5 · 4 · fac(3)
= 5 · 4 · 3 · fac(2)
= 5 · 4 · 3 · 2 · fac(1)
= 5 · 4 · 3 · 2 · 1 · fac(0) (∗)
= 5 · 4 · 3 · 2 · 1 · 0 · fac(−1)
...

Something seems to have gone wrong here. The “unrolling” of the fac’s seems to have
worked, because we did get the product 5 · · · 1 appearing, but this will keep on going
forever. We need some mechanism which stops this infinite expansion. If we instead
say fac(0) = 1, then we would actually stop at the line (∗). This is called the base
case. Familiar?

So we define

fac(N) =

{
1 if N = 0

N · fac(N − 1) otherwise.

13
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And this works! Apart from being nicely succinct (without having to use informal
notions such as · · · ), this gives us a way to write an elegant algorithm for computing
N!:

1: function fac(N)
2: if N = 0 then
3: return 1
4: else
5: return N ∗ fac(N − 1)

But is this always allowed? Can we define a random function, say,

f (N) =

{
1 if N = 0

N f (N + 1) otherwise?

Try to work out f (5). It’s not hard to see why this definition is problematic. Thus,
we need to see precisely when we are allowed to do this. Indeed, notice that fac(N)
made use of N, and of the value of fac(N − 1). In other words, in defining f (N), if
we only allow f (N − 1) to appear (and possibly N), then the definition should be fine.

This is what the following theorem guarantees.

Theorem 1.16 (Definition by Recursion). Suppose X is a set, let x ∈ X and let
g : N×X → X be a total function. Then there exists a unique total function f : N→ X
such that

f (N) =

{
x if N = 0

g(N, f (N − 1)) otherwise.

All this theorem is telling us is that we are allowed to have f (N − 1) appearing in the
definition of f (and only that), and this will determine a unique, valid function from
N to X. We will not prove it here, since it is a bit technical (although not difficult).
You probably guessed it, but the proof is by induction!

For N!, the function g : N×N→ N we need to take g(N, t) = Nt.

This theorem can be generalised so that we have any number of base cases.

Theorem 1.17 (General Definition by Recursion). Let X be a set, let x0, . . . , xr ∈ X,
and let g : Xr+1×N→ X be a function. Then there exists a unique function f : N→ X
such that

f (N) =

{
xN if 0 ⩽ N ⩽ r ,

g(f (N − r), f (N − r + 1), . . . , f (N − 2), f (N − 1), N) otherwise.

14
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This looks a bit complicated, so let us give an example to clarify. The Fibonacci se-
quence, named after Leonardo Bonacci of Pisa (1170–1270 A.D.), is defined as follows.

fib(N) =


0 if N = 0

1 if N = 1

fib(N − 1) + fib(N − 2) otherwise.

Here we have r = 1 in theorem 1.17 with X = N, so our definition must match the
form

f (N) =


x0 if N = 0

x1 if N = 1

g(f (N − 1), f (N − 2), N) otherwise

if we are allowed to define it. The base cases are clearly compatible. But what about
the last case? Is it a function of the form g(f (N − 2), f (N − 1), N)? Yes! It simply
does not make use of the variable N, but it makes use of “what it’s allowed to”, namely
the values of fib() for the previous two natural numbers.

Remark 1.18. If you are interested in the formal details of induction and recursion
(and they are very interesting), it turns out you can do induction and recursion on any
set which can be ordered (i.e., a ranked poset), not just the natural numbers. Such
structures include programming languages: you can prove things about programming
languages using induction (e.g. type safety, normalisation, etc.).

But this falls out of the scope of this course. However, if you are interested, for
the mathematical side, I suggest looking at the Recursion Theorem in chapter 3 of
Hrbáček and Jech’s Introduction to Set Theory. For the computer science side, I
suggest Pierce’s Types and Programming Languages.

Exercise 1.19. 1. A derangement of the numbers 1, 2, . . . , N is an arrange-
ment of the numbers such that no number i is in the ith position. For
example, 4321 and 21534 are derangements, but 54321 is not, because
3 appears in the 3rd position.

The number of derangements of the numbers 1, . . . , N is denoted by !N.

(a) Explain why

!N =


1 if N = 0

0 if N = 1

(N − 1)[!(N − 1)+!(N − 2)] otherwise,

using combinatorial reasoning.

(b) Prove, using induction, that !N = N!( 12! −
1
3! + · · ·+ (−1)

N 1
N!).
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(c) Deduce that !N ≈ N!/e.

(d) 15 people in an office organise a “Secret Santa” for Christmas, where
they each write their names on a piece of paper, place them in a hat,
and subsequently each person picks one from the hat.

If someone gets their own name, they have to do the whole process
again. What is the probability that they have to do the process N
times?

2. (Pick’s Theorem) Consider the points in the plane with integral coordi-
nates, Z2. A simple polygon is a polygon whose edges do not intersect
each other.

Show that the area of a simple polygon with vertices at integral coordi-
nates is 12(2i + b− 2), where i is the number of points contained entirely
within the polygon, and b is the number of points that lie on the boundary
of the polygon (i.e. on some edge.)

x

y

In the example above, there are i = 15 points inside the polygon, and
b = 8 on the boundary. Thus the area, by Pick’s theorem, is A = 1

2(30+

8− 2) = 18 square units.

3. (Catalan Numbers) A sequence of open and closed brackets is said to be
balanced if each open bracket can be matched with a closed bracket. For
example,

((())) ()()() ()(()())(())

are balanced, whereas )(, ())( and (()))(() are not. Given N pairs of
open/closed brackets, the Catalan number CN is the number of balanced
arrangements of the 2N brackets. For example, C3 = 5, since the only
possibilities are ()()(), (())(), ()(()), (()()). and ((())).

(a) Show that in general, CN+1 = CNC0+CN−1C1+ · · ·+C0CN , where
C0 = 1 by convention.

(b) Hence show that CN = 1
N+1

(
2N
N

)
.

16
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(c) Show that the coefficient of xN in the Maclaurin series expansion of
f (x) = 2/(1 +

√
1− 4x) is CN .

(d) Show that CN is the number of monotonic paths from (0, 0) to
(N,N) in N2 which do not go above the diagonal. A monotonic
path is one which goes only rightwards or upwards.

Here is an illustration for the case N = 4:

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

All possible monotonic paths from (0, 0) to (4, 4), so C4 = 14.

Now, this chapter is supposed to be about complexity, and we seem to have gotten
a little side tracked. Let’s determine the time complexity of the following algorithm
which computes the Nth Fibonacci number, FN , for N ⩾ 1.

1: function fib(N)
2: if N < 3 then
3: return 1
4: else
5: return fib(N − 1) + fib(N − 2)

Each function call to fib() (excluding subsequent calls) does Θ(1) work, namely, a
comparison and an addition, so a good estimate for the number of steps is to count
the number of times fib() ends up being called.

By induction, we can show that this number is 2FN − 1.

So the algorithm has time complexity (2FN − 1) ·Θ(1) = Θ(FN). But is this good, or
bad? Can we get a mathematical expression for FN to understand where it fits into
the asymptotic hierarchy of functions? The answer is yes, since we can find a formula
for functions which satisfy a relation of the kind f (N) = A f (N−1)+B f (N−2)+C.
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Theorem 1.20 (Stable Second Order Linear Recurrence Relations). Suppose that for
all relevant N, a function f satisfies the relation

f (N) = A f (N − 1) + B f (N − 2) + C,

where A,B and C are real numbers. If A + B ̸= 1, then for all N, f is defined by a
formula of the form

f (N) =
C

1− A− B + c1 α
N + c2 β

N ,

where c1 and c2 are constants, and α and β are the roots of x2 = Ax + B.

We can prove this by induction, but in the interest of brevity we will omit the proof.

For the Fibonacci numbers, we have A = B = 1 and C = 0, so an explicit formula for
them has the form

FN = c1 α
N + c2 β

N

where α and β are the roots of x2 = x + 1. The roots are easily found to be
(1 ±

√
5)/2, and these values are usually denoted by ϕ and 1/ϕ,3 since it turns out

that (1 +
√
5)/2 = 1/((1−

√
5)/2). So we have that

FN = c1ϕ
N +

c2
ϕN

where ϕ = (1 +
√
5)/2, and c1, c2 are constants. We don’t really need to find these

constants, since it’s already clear that FN = Θ(ϕN) from the above, but we can
determine them since we know that F0 = 0, which means that

0 = c1 + c2 =⇒ c2 = −c1,

so the formula is
FN = c1ϕ

N −
c1
ϕN
.

Now to determine c1, we use the fact that F1 = 1, so

1 = c1

(
1 +
√
5

2

)
−
c1
1+
√
5

2

,

which we can solve to obtain that c1 = 1/
√
5, which means that

FN =
ϕN − (1/ϕ)N√

5
,

which is a nice explicit formula for FN .
3ϕ is called the Golden ratio, this number has an ancient history.
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“Good”

Constant time Θ(1)

Fractional Power Θ(Nc), c ∈ (0, 1)
Linear Θ(N)

Log-linear Θ(N logN)

Quadratic Θ(N2)
...

...

Polynomial Θ(Nk)
...

...

“Bad”

...
...

Exponential Θ(cN), c > 1

Factorial Θ(N!)
...

...

Table 2: Different time complexities: the good, the bad & the ugly

So we managed to find a nice mathematical formula for the Nth Fibonacci number,
but the bad news is that it is an exponential function. In particular, since ϕ = 1+

√
5

2 ≈
1.618, then (

3
2

)N
Î ϕN Î 2N ,

so it’s a bad algorithm.

In general, the cut-off point for what we consider a “bad” algorithm, in terms of its time
complexity, is anything with complexity larger than polynomial (see table 2). As we’ve
pointed out before, it’s impossible to give an exhaustive table of time complexities,
but you should know how to compare any two functions. For instance, which is better,
N log(logN) or

√
N 2logN?

Before we conclude this chapter, let’s remark on how we can improve the algorithm
for computing Fibonacci numbers: utilising a technique known as memoisation.

Notice that when computing, say, F50 using this algorithm, many redundant calls are
being made. For instance, we will wastefully compute F48 twice, and in turn this will
produce two evaluation trees which are identical and needlessly repeat computations.
Similarly we end up working out F47 three times, F46 four times, and so on. Refer to
figure 3.

What we can do is cache the value once it has been computed, so we never work out
a Fibonacci number if it’s already been worked out.

Here is the updated algorithm which does the caching:
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F50

F49

F48

F47

...
...

F46

...
...

F47

F46

...
...

F45

...
...

F48

F47

F46

...
...

F45

...
...

F46

F45

...
...

F44

...
...

Figure 3: Recursive function calls for the Θ(ϕN) Fibonacci algorithm

1: fibs_done← array full of N zeros
2: function fib(N)
3: if N < 3 then
4: return 1
5: else if fibs_done[N] ̸= 0 then
6: return fibs_done[N]
7: else
8: ans← fib(N − 1) + fib(N − 2)
9: fibs_done[N]← ans

10: return ans

This time, the time complexity is drastically improved to Θ(N), since we only make a
recursive function call once per Fibonacci call! Look at the two recursive call trees in
figures 3 and 4 to get a better understanding.

So as a takeaway from this example, when designing an algorithm, always consider
how you can speed things up by saving previously computed terms. This ties into a
broader principle of algorithm design, known as dynamic programming.

We’ve focused mainly on time complexity so far, but there is another kind of complexity
we haven’t mentioned: space complexity, i.e., how much space we need to store data
while the algorithm is running. It turns out that both implementations require O(N)
space, the former due to the size of the recursion stack, the latter more clearly requires
O(N) space since we need to store N values.

There is a way to implement the Fibonacci algorithm which avoids an O(N) space
complexity. The idea is to keep only the previous two terms, and work iteratively,
rather than recursively.

This method is quite natural to formulate, but had we started with it, we would have
deprived ourselves of the exploration of induction and recursion, which wouldn’t have
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F50

F49

F48

F47

F46

F45

... F43

F44

F45

F46

F47

F48

Figure 4: Recursive function calls for the memoised Fibonacci algorithm. The boxed
function calls are Θ(1) since we just need to fetch them from the cache.

been very fun. Here it is:
1: function fib(N)
2: previous← 0
3: current← 1
4: for N − 1 times do
5: new← previous+ current
6: previous← current
7: current← new
8: return current

Clearly (assuming that simple things like addition and assignment are Θ(1)), this takes
Θ(N) time and Θ(1) space. We will revisit the ideas of dynamic programming at a
later stage in the course, when we solve the classical problem of finding a longest
common subsequence between two strings.

Exercise 1.21. The binomial coefficient
(
n
k

)
(a.k.a., Pacal’s triangle) can be

defined recursively by

binom(n, k) =

{
1 if k = 0 or n = k

binom(n − 1, k − 1) + binom(n − 1, k) otherwise.

Prove by induction that the recursive algorithm inferred by this definition calls
the function binom() 2

(
n
k

)
− 1 times. Write a better algorithm using memoisa-

tion, and an iterative one which uses the fact
(
n
k

)
= n(n− 1) · · · (n− k +1)/k!.
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